Introduction to Strainmeters and Strain

2018 UNAVCO Science Workshop

Evelyn Roeloffs
March 26, 2018
USGS Earthquake Science Center

Topics

1. Why use strainmeters?
2. What a PBO borehole strainmeter measures
3. How borehole strainmeter output is related to strain
4. Strain terminology, notation, math
5. Deriving the horizontal strain tensor from strainmeter output

Why use strainmeters?

Plate Boundary Observatory (PBO) borehole strainmeter network

- Funded by NSF as part of the Earthscope iniative
- 78 Gladwin Tensor Strainmeters (GTSMs)
- Installed 2004-2013
- Depths 500-800 feet (150-250 m)
- Strain resolution 10^{-10}
- Sampling rate 20 sps

Strainmeters fill "gap" between seismology and GPS

- For periods of hours to ~ 10 days, strainmeters can detect time-varying crustal deformation that does not produce displacements large enough to measure with GNSS or InSAR
- Strainmeters measure strain: a tensor quantity derived from spatial derivatives of displacement

What is "strain"?

- "Strain" is a change in one or more dimensions of a solid body, relative to a reference state
- Size may change
- Shape may change
- We assume here that strains are small, so "infinitesimal strain theory" applies
- In 1 dimension, strain can be quantified as (change in length)/(original length)

Example: Single component of a Laser Strainmeter (LSM)

Example: A strain event on LSM and GTSM

What a PBO borehole strainmeter measures

Gladwin Tensor Strain Meter (GTSM)

- Developed in Australia by Michael Gladwin
- Four "gauges" measure inner diameter of steel housing
- All types of borehole strainmeter measure housing or borehole diameter
- Three gauges (CH0, CH1, and CH 2) are 120° apart around the borehole axis
- The fourth gauge (CH3) is perpendicular to CH 1

CH0

CH1

CH2

Gladwin Tensor Strain Meter: Capacitive sensing element

- Instrument diameter changes in response to strain
- Reference gap is fixed
- Strain changes capacitance of moveable gap
- Capacitance changes are measured using a bridge
 circuit whose other arms are at the surface
- Raw GTSM data are capacitance bridge readings in counts

Fractional gauge elongation is obtained by "linearizing" raw GTSM data

One day of 1 sps raw gauge data from B073

Linearizing GTSM gauge data

- $R(t)$ denotes raw gauge data in counts at time t
- $R\left(t_{0}\right)$ denotes raw gauge data at some reference time t_{0}
- e denotes fractional elongation of gauge
- $e=\left[\left(\frac{R(t) / 1 E 8}{1-R(t) / 1 E 8}\right)-\left(\frac{R\left(t_{0}\right) / 1 E 8}{1-R\left(t_{0}\right) / 1 E 8}\right)\right] \times \frac{\text { ReferenceGap }}{\text { Diameter }}$

1 sps data after linearizing

How borehole strainmeter output is related to strain

Elongation of a single ideal gauge in response to strain

Gauge elongation, e_{i}, is a linear combination of strain parallel and perpendicular to the gauge

If x and y are parallel and perpendicular to the gauge, then

$$
e_{x}=A \epsilon_{x x}-B \epsilon_{y y}
$$

A and B are positive scalars with $A>B$

Strain terminology, notation,

 math
Notation: Coordinate systems

- Right-handed Cartesian coordinate system
- Various sets of names for coordinate axes (examples above)
- Horizontal axes will not always be East and North
- Strainmeters do not care about:
- Curvature of the earth
- Geodetic reference frames

Notation: Displacements

- Material at a point can move in three directions, e.g. $\left(u_{x}, u_{y}, u_{z}\right)$ or $\left(u_{1}, u_{2}, u_{3}\right)$
- Various sets of names for components of displacement
- e.g., $1,2,3$ or x, y, z
- Strain is a result of spatially varying displacement

Spatial derivatives of displacement: Strain and rotation

- Displacement has 3 components, e.g. $\left(u_{1}, u_{2}, u_{3}\right)$
- Deformation gradient $=\left[\begin{array}{lll}\frac{\partial u_{1}}{\partial x_{1}} & \frac{\partial u_{1}}{\partial x_{1}} & \frac{\partial u_{1}}{\partial x_{3}} \\ \frac{\partial u_{2}}{\partial x_{1}} & \frac{\partial u_{2}}{\partial x_{2}} & \frac{\partial u_{2}}{\partial x_{3}} \\ \frac{\partial u_{3}}{\partial x_{1}} & \frac{\partial u_{3}}{\partial x_{2}} & \frac{\partial u_{3}}{\partial x_{3}}\end{array}\right]=\left[\frac{\partial u_{i}}{\partial x_{j}}\right], i, j=1,2,3$
- Strain and rotation are the symmetric and antisymmetric parts of the deformation gradient:
- $\left[\frac{\partial u_{i}}{\partial x_{j}}\right]=\frac{1}{2}\left[\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right]+\frac{1}{2}\left[\frac{\partial u_{i}}{\partial x_{j}}-\frac{\partial u_{j}}{\partial x_{i}}\right]$
- Strain components: $\epsilon_{i j}=\frac{1}{2}\left[\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right]$
- Deformation gradient, strain, and rotation matrices all represent tensor quantities
- Strainmeters respond only to strain, not rotation
- Rotating a body does not change its shape or size, so strainmeters do not detect rotation

The strain tensor in 3 and 2 dimensions

- Strain components: $\epsilon_{i j}=\frac{1}{2}\left[\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right]$
- Strain as 3×3 matrix: $\left[\begin{array}{ccc}\frac{\partial u_{1}}{\partial x_{1}} & \frac{1}{2}\left[\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}\right] & \frac{1}{2}\left[\frac{\partial u_{1}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{1}}\right] \\ \frac{1}{2}\left[\frac{\partial u_{2}}{\partial x_{1}}+\frac{\partial u_{1}}{\partial x_{2}}\right] & \frac{\partial u_{2}}{\partial x_{2}} & \frac{1}{2}\left[\frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}}\right] \\ \frac{1}{2}\left[\frac{\partial u_{3}}{\partial x_{1}}+\frac{\partial u_{1}}{\partial x_{3}}\right] & \frac{1}{2}\left[\frac{\partial u_{3}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{3}}\right] & \frac{\partial u_{3}}{\partial x_{3}}\end{array}\right]$
- "Normal" strains have $i=j: \epsilon_{i i}=\frac{\partial u_{i}}{\partial x_{i}}$ (no summation implied)
- "Shear" strains have $i \neq j$, note that $\epsilon_{i j}=\epsilon_{j i}$
- 2-D strain, 2×2 matrix, 3 strain components:

$$
\left[\begin{array}{cc}
\frac{\partial u_{1}}{\partial x_{1}} & \frac{1}{2}\left[\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}\right] \\
\frac{1}{2}\left[\frac{\partial u_{2}}{\partial x_{1}}+\frac{\partial u_{1}}{\partial x_{2}}\right] & \frac{\partial u_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
\epsilon_{11} & \epsilon_{12} \\
\epsilon_{12} & \epsilon_{22}
\end{array}\right]
$$

The tensor nature of strain

- 2-D strain, 2×2 matrix: $\left[\begin{array}{ll}\epsilon_{11} & \epsilon_{12} \\ \epsilon_{12} & \epsilon_{22}\end{array}\right]$ or $\left[\begin{array}{cc}\epsilon_{x x} & \epsilon_{x y} \\ \epsilon_{x y} & \epsilon_{y y}\end{array}\right]$ or $\left[\begin{array}{ll}\epsilon_{E E} & \epsilon_{E N} \\ \epsilon_{E N} & \epsilon_{N N}\end{array}\right]$
- Like any rank-2 tensor, strain can be represented as a matrix, but not every matrix is a rank-2 tensor
- The numerical values of the strain tensor's matrix representation depend on the coordinate system
- We will express the strain tensor in various coordinate systems, e.g.:
- Parallel and perpendicular to a strainmeter gauge
- East and North
- Parallel and perpendicular to a fault
- Radial and tangential to a volcano

Horizontal (2D) strain components; sign conventions

contraction in the x-direction (a negative strain)

extension
in the y-direction
(a positive strain)

xy shear (a positive strain because y-displacement increases with increasing x)

$$
\epsilon_{x x}=\frac{\partial u_{x}}{\partial x}
$$

$\epsilon_{y y}=\frac{\partial u_{y}}{\partial y}$
$\epsilon_{x y}=\frac{1}{2}\left[\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right]$

Engineering shear in terms of angle change

$$
\begin{gathered}
\epsilon_{x y} \approx \frac{1}{2}\left[\frac{d x}{y}+\frac{d y}{x}\right] \\
=\frac{1}{2}[\tan \alpha+\tan \beta] \\
\approx \frac{1}{2}[\alpha+\beta] \text { for small } \alpha \text { and } \beta \\
\epsilon_{x y} \approx \frac{1}{2}\left[90^{\circ}-\gamma\right]
\end{gathered}
$$

Sketch shows a positive shear strain

Example: Locked vs. creeping strike-slip fault

Elongation of ideal gauge:

Areal strain and differential extension

- $e_{x}=A \epsilon_{x x}-B \epsilon_{y y}=0.5(A-B)\left(\epsilon_{x x}+\epsilon_{y y}\right)+0.5(A+B)\left(\epsilon_{x x}-\epsilon_{y y}\right)$
- We refer to $\epsilon_{x x}+\epsilon_{y y}$ as "areal strain" and $\epsilon_{x x}-\epsilon_{y y}$ as "differential extension"
- Define $C=0.5(A-B)$, the "areal strain response coefficient" and $D=0.5(A+B)$, the "shear strain response coefficient"
- $e_{x}=C\left(\epsilon_{x x}+\epsilon_{y y}\right)+D\left(\epsilon_{x x}-\epsilon_{y y}\right)$
- NOTE: $\epsilon_{x y}$ doesn't change length of an ideal gauge parallel to x or y

Areal strain, differential extension, engineering shear

- Areal strain $\epsilon_{x x}+\epsilon_{y y}$ does not depend on coordinate system
- We refer to differential extension ($\epsilon_{x x}-\epsilon_{y y}$) and engineering shear $2 \epsilon_{x y}$ as shear strain components
- Neither shear strain component changes area
- Both shear strains depend on coordinate system

Gauge elongation depends on elastic moduli of the formation

- The stiffer the formation, the larger are C and D
- Nominal values are $C=0.75$ and $D=1.5$ for the strain component definitions here
- C and D are estimated for each strainmeter (or gauge) based on known strain signals

Deriving the horizontal strain tensor from strainmeter output

Measurements from several gauges must be combined to determine the strain tensor

- $e_{x}=C\left(\epsilon_{x x}+\epsilon_{y y}\right)+D\left(\epsilon_{x x}-\epsilon_{y y}\right)$
- Each gauge responds to only two strain components, if strain is expressed in gauge-parallel coordinates
- To combine measurements from different gauges, need to express them in a single coordinate system
- This requires understanding how to express the strain tensor in a rotated coordinate system

Transforming horizontal strains to rotated coordinates

Horizontal strain tensor can be expressed in a coordinate system rotated about the vertical axis
θ is the angle from the original coordinate system to the new coordinate system, measured counterclockwise (CCW)

$$
\left[\begin{array}{c}
\epsilon_{x^{\prime} x^{\prime}}+\epsilon_{y^{\prime} y^{\prime}} \\
\epsilon_{x^{\prime} x^{\prime}}-\epsilon_{y^{\prime} y^{\prime}} \\
2 \epsilon_{x^{\prime} y^{\prime}}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos 2 \theta & \sin 2 \theta \\
0 & -\sin 2 \theta & \cos 2 \theta
\end{array}\right]\left[\begin{array}{c}
\epsilon_{x x}+\epsilon_{y y} \\
\epsilon_{x x}-\epsilon_{y y} \\
2 \epsilon_{x y}
\end{array}\right]
$$

- Areal strain is invariant under rotation: $\epsilon_{x^{\prime} x^{\prime}}+\epsilon_{y^{\prime} y^{\prime}}=\epsilon_{x x}+\epsilon_{y y}$ for any θ
- Shear strains are functions of 2θ

Gauge elongations in a non-gauge-parallel coordinate system

With x parallel to the $i^{\text {th }}$ gauge,

$$
e_{i}=[C, D, 0] \times\left[\begin{array}{c}
\epsilon_{x x}+\epsilon_{y y} \\
\epsilon_{x x}-\epsilon_{y y} \\
2 \epsilon_{x y}
\end{array}\right]
$$

$$
\begin{gathered}
e_{i}=[C, D, 0]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos 2 \theta & -\sin 2 \theta \\
0 & \sin 2 \theta & \cos 2 \theta
\end{array}\right]\left[\begin{array}{c}
\epsilon_{x^{\prime} x^{\prime}}+\epsilon_{y^{\prime} y^{\prime}} \\
\epsilon_{x^{\prime} x^{\prime}}-\epsilon_{y^{\prime} y^{\prime}} \\
2 \epsilon_{x^{\prime} y^{\prime}}
\end{array}\right] \\
e_{i}=[C, D \cos 2 \theta,-D \sin 2 \theta]\left[\begin{array}{c}
\epsilon_{x^{\prime} x^{\prime}}+\epsilon_{y^{\prime} y^{\prime}} \\
\epsilon_{x^{\prime} x^{\prime}}-\epsilon_{y^{\prime} y^{\prime}} \\
2 \epsilon_{x^{\prime} y^{\prime}}
\end{array}\right] \\
e_{i}=C\left(\epsilon_{x^{\prime} x^{\prime}}+\epsilon_{y^{\prime} y^{\prime}}\right)+D \cos 2 \theta\left(\epsilon_{x^{\prime} x^{\prime}}-\epsilon_{y^{\prime} y^{\prime}}\right)-D \sin 2 \theta\left(2 \epsilon_{x^{\prime} y^{\prime}}\right)
\end{gathered}
$$

In a non-gauge-parallel coordinate system,

 gauge elongation depends on engineering shearWith x parallel to the $i^{\text {th }}$ gauge,
$e_{i}=C\left(\epsilon_{x x}+\epsilon_{y y}\right)+D\left(\epsilon_{x x}-\epsilon_{y y}\right)$
Note that e_{i} does not depend on $2 \epsilon_{x y}$

If the gauge is not aligned along the coordinate axis:

$$
e_{i}=C\left(\epsilon_{x^{\prime} x^{\prime}}+\epsilon_{y^{\prime} y^{\prime}}\right)+D \cos 2 \theta\left(\epsilon_{x^{\prime} x^{\prime}}-\epsilon_{y^{\prime} y^{\prime}}\right)-D \sin 2 \theta\left(2 \epsilon_{x^{\prime} y^{\prime}}\right)
$$

Now e_{i} does depend on $2 \epsilon_{x^{\prime} y^{\prime}}$

PBO 4-component GTSM: Gauge configuration from metadata

$\mathrm{CH} 0, \mathrm{CH} 1$, and CH 2 are equally spaced
CH 3 is perpendicular to CH 1
Blue dots: end of gauge whose azimuth is given

- Strainmeter orientation cannot be controlled during installation
- Orientation is measured after installation (and may be inaccurate)
- UNAVCO and IRIS metadata give measured azimuths of the 4 gauges
- It does not matter which "end" of the strainmeter gauge is referred to
- Azimuths are clockwise from north

PBO 4-component GTSM: Orthogonal CH1 and CH3

$\mathrm{CH} 0, \mathrm{CH} 1$, and CH 2 are equally spaced CH 3 is perpendicular to CH 1

Blue dots: end of gauge whose azimuth is given Orange circles: Azimuths 90 degrees apart

- Ignore CH 0 and CH 2 for now...note that CH 1 and CH 3 are orthogonal

PBO 4-component GTSM: Orthogonal CH1 and CH3

$\mathrm{CH} 0, \mathrm{CH} 1$, and CH 2 are equally spaced CH 3 is perpendicular to CH 1

Blue dots: end of gauge whose azimuth is given Orange circles: Azimuths 90 degrees apart

- Use right-handed coordinates x_{1}, y_{1}
- x_{1} is parallel to CH 1 so CH 1 elongation is

$$
e_{1}=C\left(\epsilon_{x_{1} x_{1}}+\epsilon_{y_{1} y_{1}}\right)+D\left(\epsilon_{x_{1} x_{1}}-\epsilon_{y_{1} y_{1}}\right)
$$

- Use formula for rotating by 90° to get e_{3} :

$$
e_{3}=C\left(\epsilon_{x_{1} x_{1}}+\epsilon_{y_{1} y_{1}}\right)-D\left(\epsilon_{x_{1} x_{1}}-\epsilon_{y_{1} y_{1}}\right)
$$

- Solve for areal strain and differential extension:

$$
\begin{aligned}
& \left(\epsilon_{x_{1} x_{1}}+\epsilon_{y_{1} y_{1}}\right)=\left(e_{1}+e_{3}\right) / 2 C \\
& \left(\epsilon_{x_{1} x_{1}}-\epsilon_{y_{1} y_{1}}\right)=\left(e_{1}-e_{3}\right) / 2 D
\end{aligned}
$$

- Areal strain is proportional to average of gauge elongations
- Differential extension is proportional to difference between gauge elongations

Strains from CH1 and CH3: Example

Note these strains are expressed in coordinates aligned along B073 CH1 Metadata give this as $\mathrm{N} 210^{\circ} \mathrm{E}$, equivalently, $\mathrm{N} 30^{\circ} \mathrm{E}$

PBO 4-component GTSM: Equally spaced CH0,CH1,CH2

$\mathrm{CH} 0, \mathrm{CH} 1$, and CH 2 are equally spaced
Blue dots: end of gauge whose azimuth is given Orange circles: Azimuths 120 degrees apart

- At least 3 gauges are needed to get the three components of the horizontal strain tensor
- Now ignore CH3...note that $\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2$ are equally spaced in azimuth
- Need to use the opposite "ends" of CH 1 and CH 2
- Use same coordinates with x_{1} parallel to CH 1
- CH 0 is $+120^{\circ}$ from CH 1 and CH 2 is -120° from CH 1
- Note these angles are positive CCW, using polar coordinate math convention

3 gauge elongations to 3 strain components

- 3 identical gauges 120° apart $(\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2)=\left(e_{0}, e_{1}, e_{2}\right)$
- Express elongations in CH1-parallel coordinates:

$$
\begin{aligned}
& e_{0}=C\left(\epsilon_{x_{1} x_{1}}+\epsilon_{y_{1} y_{1}}\right)+D \cos \left(240^{\circ}\right)\left(\epsilon_{x_{1} x_{1}}-\epsilon_{y_{1} y_{1}}\right)+D \sin \left(240^{\circ}\right)\left(2 \epsilon_{x_{1} y_{1}}\right) \\
& e_{1}=C\left(\epsilon_{x_{1} x_{1}}+\epsilon_{y_{y_{1}}}\right)+D\left(\epsilon_{x_{1} x_{1}}-\epsilon_{y_{1 y_{1}}}\right) \\
& e_{2}=C\left(\epsilon_{x_{1} x_{1}}+\epsilon_{y_{1} y_{1}}\right)+D \cos \left(-240^{\circ}\right)\left(\epsilon_{x_{1} x_{1}}-\epsilon_{y_{y_{1} y_{1}}}\right)+D \sin \left(-240^{\circ}\right)\left(2 \epsilon_{x_{1} y_{1}}\right)
\end{aligned}
$$

- Solve for strain components:

$$
\begin{aligned}
& \left(\epsilon_{x_{1} x_{1}}+\epsilon_{y_{1} y_{1}}\right)=\left(e_{0}+e_{1}+e_{2}\right) / 3 C \\
& \left(\epsilon_{x_{1} x_{1}}-\epsilon_{\text {}_{1} y_{1}}\right)=\left[\left(e_{1}-e_{0}\right)+\left(e_{1}-e_{2}\right)\right] / 3 D \\
& 2 \epsilon_{x_{1} y_{1}}=\left(e_{2}-e_{0}\right) /[2(0.866 D)]
\end{aligned}
$$

- Areal strain is proportional to average of outputs from equally spaced gauges
- Shear strains are proportional to differences among gauge outputs

Strains from different gauge subsets: Example

Any subset of 3 gauges can be used to obtain the horizontal strain tensor

$\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2$

B073 Strains from $\mathbf{C H 0} 0, \mathrm{CH} 1, \mathrm{CH} 2$

CH 1 and CH 3
B073 Strains from CH1 \& CH3

These strains are expressed in coordinates aligned along B073 CH1= $\mathrm{N} 210^{\circ} \mathrm{E}$, equivalently, $\mathrm{N} 30^{\circ} \mathrm{E}$
The rotation formula can be used to express them in E-N coordinates

Transforming horizontal strains to E-N coordinates

Apply the rotation formula with $\theta=-60^{\circ}$

$$
\left[\begin{array}{c}
\epsilon_{E E}+\epsilon_{N N} \\
\epsilon_{E E}-\epsilon_{N N} \\
2 \epsilon_{E N}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \left(-120^{\circ}\right) & \sin \left(-120^{\circ}\right) \\
0 & -\sin \left(-120^{\circ}\right) & \cos \left(-120^{\circ}\right)
\end{array}\right]\left[\begin{array}{c}
\epsilon_{x_{1} x_{1}}+\epsilon_{y_{1} y_{1}} \\
\epsilon_{x_{1} x_{1}}-\epsilon_{y_{1} y_{1}} \\
2 \epsilon_{x_{1} y_{1}}
\end{array}\right]
$$

Note that the areal strain is unchanged.

$$
\begin{gathered}
\epsilon_{E E}-\epsilon_{N N}=0.5\left(\epsilon_{x_{1} x_{1}}+\epsilon_{y_{1} y_{1}}\right)-0.866\left(2 \epsilon_{x_{x_{1} y_{1}}}\right) \\
2 \epsilon_{E N}=0.866\left(\epsilon_{x_{1} x_{1}}+\epsilon_{y_{y_{1} y_{1}}}\right)+0.5\left(2 \epsilon_{x_{x_{1} y_{1}}}\right)
\end{gathered}
$$

Strains in E-N coordinate system: Example

East is $60^{\circ} \mathrm{CW}$ from B 073 CH 1

x_{1} parallel to B 073 CH 1
B073 Strains from $\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2$

Shear strains in E-N coordinates
B073 Strains from $\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2$, rotated $\mathbf{- 6 0}$ degrees

Time for questions...

