

PBO STRAINMETER DATA QUALITY

Kathleen Hodgkinson, UNAVCO

2018 Strainmeter Short Course Omni, Broomfield, Colorado

- Identify indicators of good quality strain data
- Assess performance over different frequency ranges
- Look at examples of tectonic and non-tectonic signals observed in borehole strainmeter data

OVERVIEW

NOT TO SCALE Cables not shown

8 1/2" Hammer Drilled Hole

drilled

BOREHOLE STRAINMETER

BOREHOLE STRAINMETER

INSTRUMENT SENSITIVITY

Strainmeters are the optimal instruments to record transients with periods of hours to weeks.

They bridge the gap between seismology and GPS.

INSTRUMENT SENSITIVITY

Improving subdaily strain estimates using **GPS** measurements.

Reuveni, Y., S. Kedar, S. E. Owen, A. W. Moore, and F. H. Webb (2012), Geophys. Res. Lett., 39, 31

PERFORMANCE

Signals

Borehole Compression

Tidal Signal Step-free data sets

Seismic Shear

- Gladwin Tensor Strainmeters are designed to operate in a state of compression.
- Ideally three gauges should be in compression over periods of years but depending on the periods of the signal of interest you may still be able to use the data.

B036, Grants Pass, Oregon

UNAVCO

B900, Parkfield

- Strainmeters are optimized for good performance at tidal frequencies
- Tides should be dominant signal over hours to weeks
- Expect peaks in the M₂ and O₁ frequencies to stand well above the background noise.

B057, Lucas Valley, San Francisco

B057, Lucas Valley, San Francisco

M₂ and O₁ tidal bands should stand well above the background noise in the frequency domain **B087, Ford Ranch, Anza 10**⁴ 10² dB/cpd 10° 10^{-2 ر} 0.6 1.2 2.2 0.8 1.6 1.4 1.8 2 0.4 Cycles per Day

All strainmeter data will have some unexplained steps in the time-series

B022 Spectrogram, May 31, 2008

HIGH FREQUENCY STRAIN DATA

B067 Spectrogram, Aug 13, 2008

HIGH FREQUENCY STRAIN DATA

Seismic Shear Strains, Turkey

UNAVCO

HIGH FREQUENCY STRAIN DATA

- Contraction

- Barometric Pressure
- Rainfall
- Irrigation
- Construction
- Seasonal Signals

NON-TECTONIC SIGNALS

B018, Delphi, Washington

BAROMETRIC SIGNAL

B018, Delphi, Washington

BAROMETRIC SIGNAL

PBO BSM Barometric Response Coefficients

Barometric pressure loading causes gauge contraction

BAROMETRIC SIGNAL

- Strainmeter

CH0 CH1 CH2 CH3

Co-located Strainmeters, Pathfinder, Anza

SURFACE LOADING

Co-located Strainmeters, Pathfinder, Anza

SURFACE LOADING

B057, San Francisco Bay Area, Napa Earthquake

A) B057 Lucas Valley, Residual Gauge Strains 600 Gauge 0 400 Gauge 1 Gauge 2 200 Gauge 3 nanostrain removed -200 mic offset -400 coseisr : : -600 July Aug June

SURFACE LOADING

Historic Rainfall Days before AGU 2014

SURFACE LOADING

DOWNHOLE TEMPERATURE

TSUNAMI AND SEICHES

Luttrell, K., et al (2013), Constraints on the upper crustal magma reservoir beneath Yellowstone Caldera inferred from lake-seiche induced strain observations, Geophys. Res. Lett., **40**, 501-506.

TSUNAMI AND SEICHES

CASCADIA EPISODIC TREMOR AND SLIP

ASEISMIC CREEP SIGNALS

SUMMARY

Overview

BSM Literature

Review [PDF]

Instrumentation

PBO BSM Station

· BSM data at IRIS

Coordinates

PBO Data Management

Borehole Strainmeter

System Critical Design

Q	Search	

Seismological S... 🔻

Compression Tides Seismic

☆自♥↓☆♀!目

B081	Good quality data. Pore pressure sensor in borehole. Calibrated by Roeloffs [2012]. Data analyzed by Barbour and Agnew [2012].	V	\checkmark	\checkmark
B082	Co-located with B089, hydroligcal pumping with a few 100 meters of site contaminates data.	\checkmark	\checkmark	\checkmark
B084	Located near PFO laser strainmeter. Calibrated by Roeloffs [2010]. Data analyzed by Barbour and Agnew [2010].	\checkmark	\checkmark	V
B086	Good quality data. Calibrated by Roeloffs [2012]. Data analyzed by Barbour and Agnew [2012].	\checkmark	\checkmark	\checkmark
B087	Good quality data. Pore pressure sensor in borehole. Data analyzed by Barbour and Agnew [2012].	\checkmark	\checkmark	\checkmark
B088	Postseismic pore pressure transients recorded at this site after earthquakes in southern California, Gulf of California and after the 2010 M7.2 El Mayor-Cucapah earthquake. Occasional pumping signal in data. Data analyzed by Barbour and Agnew [2010].	\checkmark	\checkmark	V
B089	Co-located with B082, hydrological pumping with a few 100 meters of site contaminates data.	\checkmark	\checkmark	\checkmark
B093	Took 3 years to reach compression. Single channel outages in 2012. Otherwise good quality data. Data analyzed by Barbour and Agnew [2012].	V	\checkmark	V
B946	Not in compression, cultural noise that mimics creep events. Data steps on all channels, but more common on CHO and CH1.		V	\checkmark

DATA QUALITY SUMMARY

EXAMPLE

Download raw gauge data in digital counts from strainmeter B012, process the gauge data to generate time-series.

February 4th to February 7th 2006, 1-sps, all 4 strain channels from B012

1. Edit get_data_ws.bash in the general directory.

> cp get_data_ws.bash get_data_ws_B012.bash

You will need to modify the following:

- Station name
- Network code
- Start Date
- **End Date**

Make the code more generic

#!/bin/bash

nw=\$1Network codebsm=\$2Strainmeterstart=\$3Start dateend=\$4End date

for g in 0123
do
 c=\$((g+1))
 ftp -o \${bsm}.CH\$g.txt
"http://service.iris.edu/irisws/timeseries/1/query?net=\${nw}&sta=\${bsm}&cha=LS\${c}
}&start=\${start}T00:00:00&end=\${end}T00:00:00&output=ascii2&loc=T0"
 linearize.bash \${bsm}.CH\$g.txt
done

1. get the data > get_data_ws_B012.bash PB B012 2006-02-03 2006-02-06

2. make the tensor strain, type
> make_tensor.pl B012

Plot the data using, plot_gauge.bash B012

B012.tensor.txt, Channel Data

