What GPS Can Tell Us About Earth

High-precision GPS stations measure Earth system processes and hazards.

Tectonics
GPS measures Earth movements as small as millimeters per year; it's sensitive enough to record the slow motions of plate tectonics.

Water Resources
The ground moves up and down slightly in response to changes in lake, snow, and groundwater levels, useful in monitoring drought and recovery.

Glaciers
Glaciers weigh down and depress Earth's surface, which rebounds as glaciers melt away. This motion gives information about Earth structure and changes in ice, snow, and shorelines.

Earthquakes
GPS measures both the slow build-up to and the rapid movement during an earthquake, crucial for hazards assessments and tsunami and earthquake early warning systems.

Volcanoes
Many volcanoes inflate and deflate like a balloon as magma pressures fluctuate. GPS also measures ash plume height based on changes in the satellite signals traveling through the ash.

Ionosphere
The GPS satellite signal is delayed by charged particles caused by solar storms. This layer can also be displaced by tsunamis, yielding information for tsunami early warning.

Troposphere
The GPS satellite signal is delayed by water vapor that can turn into rain. This informs forecasting of flash floods and hurricanes.

Mission Cal/Val
Measuring the delay in the GPS satellite signal as it passes through the atmosphere is important for calibrating and validating other satellite datasets.

Sea Level
As a tide gauge, GPS can measure local, regional, and global changes in sea level.

Vegetation
GPS can measure the onset of plant growth, plant aging, maximum vegetation growth, and the length of the growing season.

Soil Moisture
Soil moisture measured over broad regions indicates how much precipitation evaporated back into the atmosphere.

Snow Depth
GPS provides remote snow depth measurements in hard-to-reach areas.

Ice Height
Changing ice heights indicate how much freshwater is stored by or being lost from glaciers.

GPS signals sense information about the atmosphere.

GPS positions give us information about Earth's many systems.

GPS is the U.S. component of the global navigation satellite system, known more generally as GNSS.