

Dataworks for GNSS: Manual for Data Repositories

 by Stuart Wier, Mike Rost, and Fran Boler

UNAVCO

May 1, 2016

Cover illustration:

COCONet Site CN13, San Salvador Baham

Dataworks for GNSS and GSAC are developed and supported by UNAVCO and funded by NSF.

Copyright © 2016 UNAVCO Inc.

UNAVCO
6350 Nautilus Drive

Boulder, Colorado U.S.A.
www.unavco.org

Table of Contents

1 Introduction to Dataworks for GNSS ... 1

2 GSAC: Discovery and Download Services for Data Repositories ... 4

2.1 What is GSAC ... 4

2.2 Local Station Support with GSAC in Dataworks for GNSS .. 5

2.3 GSAC in Dataworks for GNSS at Mirror Archives ... 6

2.4 Installing and Building GSAC... 7

2.5 Configuring GSAC Web Site Appearance (Optional) .. 8

3 The Dataworks for GNSS Database (DGD).. 9

3.1 Fundamental Tables... 11

3.2 Lookup Tables .. 13

3.3 Database Maintenance .. 19

4. Mirroring Station and Equipment Metadata and Data Files from a Remote Data Center Running GSAC 20

4.1 Python Script for Updating (Mirroring) the Station & Equipment Information from a Remote GSAC......... 21

4.2 Daily Run of mirrorStations.py by Crontab .. 24

4.3 Handling mirrorStations.py: Catching Up.. 25

4.4 Python Script to Mirror Data Files from a Remote GSAC and to Update the Database 25

4.5 Daily Run of mirrorData.py by Crontab .. 28

4.6 Handling mirrorData.py: Catching Up ... 28

5 Dataworks Operations with Local GNSS Stations ... 29

5.1 Add a New Station and/or a New Equipment Session to the Database ... 30

5.2 Downloading GNSS Station DataFiles and Associated Population of the Dataworks Database 32

6 Metrics: Counting Data File Downloads and GSAC Requests in Dataworks for GNSS 48

6.1 Counting GNSS Data File Downloads by Remote Users .. 48

6.2 Counting Requests for Information from GSAC by Remote Users ... 49

7 Recommendations for Backup and Recovery... 51

8 The Dataworks for GNSS Email Group and Finding Help .. 52

8.1 Dataworks for GNSS Email Forum .. 52

8.2 Web Resources for Dataworks for GNSS and GSAC... 52

Sponsor Acknowledgments .. 53

Appendix A: Maintaining the Database and the Using MySQL Command Line Client "mysql" 53

Appendix B: Setup and Maintenance of the Downloader Software.. 62

Dataworks for GNSS

1

1 Introduction to Dataworks for GNSS
Dataworks for GNSS is a software project launched by UNAVCO that helps regional GNSS network
operators manage data and metadata for small networks (e.g. tens of stations).

Dataworks for GNSS provides subsystems (e.g. downloading from the receiver and subsequent data
management, metadata management using a streamlined database, and data and metadata distribution) as
open source software modules or packages. Network operators can select the subsystems that meet their
needs for data management functionality. In 2015, UNAVCO provisioned several servers with Dataworks
software that were then deployed at data centers in Mexico, Central America and the Caribbean as part of
the COCONet and TLALOCNet projects. Following the successful deployment of these systems, the
Dataworks software was released publically to interested data centers. The software, copyrighted by
UNAVCO, is open source and may be downloaded according to instructions on the UNAVCO web site. The
software may be used in accordance with the GNU Lesser General Public License version 2.1 or (at your
option) any later version.

The following subsystems of Dataworks are available from the UNAVCO Dataworks web site at
http://www.unavco.org/software/data-management/dataworks/dataworks.html, along with
documentation:

1. Dataworks for GNSS Database (DGD): schema for MySQL database management system

2. GSAC (Geodesy Seamless Archive Centers): presentation of data and metadata through a web UI
for search and access, and as an API

3. Data and Metadata Mirror Modules: mirroring of data and metadata from a GSAC data center
and subsequent local data handling

4. Metrics Module: tracking of data ingest and distribution (optional)

5. Data Download Module: receiver downloading and local data handling

6. Data Ingest Module: stores file metadata in the DGD

7. Data Export Module: stores ftp ready files in the distribution file system

A note about examples in this documentation: many examples were drawn from the deployment of the
Dataworks software to TLALOCNet and COCONet data centers. Many examples leverage the GSAC and
archive contents at UNAVCO. Your utilization can be totally independent of UNAVCO. Any examples
referring to COCONet or TLALOCNet are simply for illustration purposes.

The diagram shows an example overall setting for Dataworks including optional “mirroring” of data from a
remote data center dunning GSAC.

http://www.unavco.org/software/data-management/dataworks/dataworks.html

Dataworks for GNSS

2

Dataworks is an interacting set of software modules that require the Linux operating system, software
packages, and user logins all to be correctly installed and/or created. There are two options for running
Dataworks: a local server that you support, or an Amazon Virtual Machine server running the Dataworks
AMI (Amazon Machine Image) that UNAVCO has created; in this case Dataworks will be running “in the
cloud”.

A running Dataworks instance, whether in the cloud or on a local server, will have a Linux operating system
and:

 An Apache web server with the Tomcat Application server

 An FTP service

 A MySQL database

 Java

 Python

 Specific user accounts

The MySQL database comes with the command line client “mysql” that can be used for operating the
database and populating information. To assist with populating the Dataworks database, you may wish to
install

 MySQL Workbench

To run mirroring scripts you need

Dataworks for GNSS

3

 Linux utility "curl"

To use a local server that you support for Dataworks, see the separate document Dataworks System
Services Guide available at http://www.unavco.org/software/data-
management/dataworks/lib/docs/Dataworks_System_Services_Guide.pdf. If you are using your own
server, your success with Dataworks will depend on ensuring that each requirement for the server has
been set up properly.

Once your server is ready as described in the Systems and Services Guide, you will obtain and install the
software by following instructions on the website:

http://www.unavco.org/software/data-management/dataworks/software-repository/software-
repository.html

The Dataworks AMI includes everything listed above. All the software is installed and operating when you
startup the AMI on your own Amazon virtual machine instance.

Whether you are using the AMI Dataworks or Dataworks installed on your local system, when you first
startup your Dataworks system, the database contains only sample data and you will need to populate the
database with station and datafile information and populate any previously acquired data files into your
Dataworks data area.

http://www.unavco.org/software/data-management/dataworks/lib/docs/Dataworks_System_Services_Guide.pdf
http://www.unavco.org/software/data-management/dataworks/lib/docs/Dataworks_System_Services_Guide.pdf
http://www.unavco.org/software/data-management/dataworks/software-repository/software-repository.html
http://www.unavco.org/software/data-management/dataworks/software-repository/software-repository.html

Dataworks for GNSS

4

2 GSAC: Discovery and Download Services for Data Repositories

2.1 What is GSAC

GSAC is a software package providing a range of capabilities to connect a data repository to end data users,
over the Internet. GSAC allows users to make requests to find information about GPS stations (sites),
instruments, and data files. Users may download GPS receiver data files using file URLs from GSAC.
Familiarity with GSAC documentation http://www.unavco.org/software/data-
management/gsac/gsac.html is highly recommended. Exploring the working UNAVCO GSAC is useful,
too.

This diagram shows a data repository with GSAC, data files, the Dataworks database, and an FTP server.
Users make requests via a web user interface or though a command line shell or terminal commands (an
API, or Application Programming Interface request).

Users query GSAC for information (metadata) about sites (stations), instruments, and instrument data files.
Users receive information about sites (stations), instruments, and downloading instrument data files. Note
that no data files flow through GSAC. GSAC tells users how to get data files with FTP URLs.

For example, UNAVCO has a GSAC (at http://www.unavco.org/software/data-management/gsac/gsac.
html). In the context of the COCONet Dataworks deployment, GSAC at UNAVCO is used by COCONet centers
to find information about COCONet stations and data files, and load the local COCONet data repository
database, mirroring data originating at the UNAVCO Archive. And each COCONet data center has its own
GSAC to allow remote users to find the information about COCONet stations and data files held at that

http://www.unavco.org/software/data-management/gsac/gsac.html
http://www.unavco.org/software/data-management/gsac/gsac.html

Dataworks for GNSS

5

COCONet data center.

The GSAC package of services, like the database, is built with the concepts of stations (sites or monuments),
at fixed locations (latitude and longitude), with instruments (GNSS receivers), making instrument data
files.

A data center with GSAC has a database with metadata about the stations, instruments, and data files;
data files for public download on an FTP server; a web server; GSAC software; and a server (hardware,
which could be in the cloud). GSAC receives requests, reads from the database, and sends results to remote
end users. Though GSAC can operate with many databases if they hold the necessary metadata, in this
documentation, use with the Dataworks for GNSS database schema (DGD) (Section 3) is assumed, and
supported, while use with other databases is not covered or supported.

GSAC only reads from the database. Inserting data in the database, and database maintenance, is handled
outside of GSAC. GSAC has no write permissions in the database. Part of operating GSAC is database
maintenance and keeping the database up to date, as described in Section 3.

Note that GSAC does not “know about” the local data file system. GSAC does not read data files. GSAC does
not know data file formats. GSAC does not know about data file naming conventions. GSAC does not alter,
understand, or modify any kind of data files, including RINEX or other types of GPS data files. GSAC does
not check data file quality, correct files, or otherwise manage files or manage a data archive or a database.

GSAC is designed to be a general-purpose access tool for GNSS stations, instruments, and data files. Though
GSAC can work with many kinds of geodetic and other instrument networks and many kinds of data files,
this does not apply for Dataworks for GNSS, which is a set of software tailored for GNSS.

GSAC does not "know about", or directly use the local FTP file server. GSAC does not handle file downloads.
GSAC does provide URLs, stored in the DGD, to users, so they can download files. But the URLs may be at
any or several data centers, so far as GSAC is concerned.

For complete details about GSAC concepts and how to use GSAC, see the UNAVCO GSAC web site
http://www.unavco.org/software/data-management/gsac/gsac.html, and the GSAC User Guide:
http://www.unavco.org/software/data-management/gsac/lib/docs/UNAVCO_GSAC_User_Guide.pdf

2.2 Local Station Support with GSAC in Dataworks for GNSS

In the context of Dataworks for GNSS, GSAC is part of the larger structure shown in the diagram below.
Dataworks for GNSS installations can download and manage data files from local GNSS stations and these
data files are accessible through GSAC. For handling local data, a set of Python script retrieves station data
files and updates the database. The database must be maintained by the data center with correct and
complete information about the local stations and their instruments. The Python code is provided by
UNAVCO as part of Dataworks for GNSS, and is described in Section 5 below.

http://www.unavco.org/software/data-management/gsac/gsac.html
http://www.unavco.org/software/data-management/gsac/lib/docs/UNAVCO_GSAC_User_Guide.pdf

Dataworks for GNSS

6

2.3 GSAC in Dataworks for GNSS at Mirror Archives

For mirror archives, Dataworks for GNSS also uses a remote GSAC (often the UNAVCO GSAC) via its API to
obtain station and instrument information, and to download the associated GNSS data files from the remote
GSAC. Metadata about stations and instruments is queried from the remote GSAC with a Python script
accessing the remote GSAC API, to populate and update the DGD (the red line from “UNAVCO” in the
diagram; alternatively, another non-UNAVCO GSAC could be the source for mirroring). The Python script is
provided by UNAVCO as part of Dataworks for mirrors, and is described in Section 4 below.

Also as also part of "mirroring" the remote GSAC data, GNSS data files from station instruments are copied
from the remote GSAC/data center with another Python script, to populate and update the DGD (the green
line from UNAVCO in the diagram). This second Python script is provided by UNAVCO as part of Dataworks
for GNSS for mirrors, and is described in Section 4 below.

Dataworks for GNSS

7

The processes indicated by the red and green lines from UNAVCO, in the diagram above, act to accomplish
"mirroring" UNAVCO's archive.

2.4 Installing and Building GSAC

The following sections are a quick overview of GSAC installation and will not usually be part of routine use
of Dataworks for GNSS because most of the installation is handled already.

Note: Dataworks server setup should include creating an account for the user with the control of the
Dataworks software, that is, the user having responsibility to ensure Dataworks software is up to
date and tested. This user is designated in this documentation as having user name “developer1”.

When using an Amazon image or after obtaining and installing Dataworks according to instructions in a
separate document, you will find the instructions to build GSAC in two README files:

Dataworks-SW/dataworks-gsac/src/org/gsac/README (the "GSAC README part 1"), and

Dataworks-SW/dataworks-gsac/src/org/dataworks/gsac/README ("README part 2").

Note the system requirements in the "GSAC README part 1" file.

Complete details to install GSAC are in those two README files. The complete instructions are not
duplicated here.

Dataworks for GNSS

8

2.5 Configuring GSAC Web Site Appearance (Optional)

To create a customized web style within GSAC for your particular Dataworks repository, you change a few
files which control the header and footer of web pages created by GSAC. The header and footer are html
files:

gsac-code/src/org/dataworks/gsac/resources/header.html

gsac-code/src/org/dataworks/gsac/resources/footer.html

These files use standard HTML. Edit these files to specify text and images in your GSAC web pages' headers
and footers. All GSAC web pages have the same header and footer. Sample working code, including use of
logo image files, was included in these files supplied by UNAVCO. Note that logos and other image files are
kept in

gsac-code/src/org/dataworks/gsac/htdocs.

That directory also has a file index.html which has the contents of the GSAC home page.

After you revise any of these html files, rebuild GSAC again i.e. do command 'ant' again in

gsac-code/src/org/dataworks/gsac/

and if it succeeds, then copy the new GSAC war file to the Tomcat area as described above.

Always test your GSAC after any rebuild of GSAC. First click on the blue choice "Search Sites" on the top
menu line. This brings up the web page to do site searches. On that page, click on the grey "Search Sites"
button. This should show a table of all the sites in your database. If your database has not been populated,
no sites are listed. Then click on the blue choice "Search Files" on the top menu line. This brings up the
web page to do searches for data files in your repository. On that page click on the grey "Search Files"
button. This should show a table of hundreds of data files in your repository. If your database has not been
populated, no files are listed. Next, use the "Base URL" for your GSAC, in your browser, such as
http://tlalocnet.udg.mx/tlalocnetgsac/, the part before "gsacapi/" in a full GSAC URL. This will show your
GSAC's home page. The header, contents, and footer should be what you want for your GSAC web site.
These simple tests should indicate that GSAC is working, even if your database has not been populated.

http://tlalocnet.udg.mx/tlalocnetgsac/

Dataworks for GNSS

9

3 The Dataworks for GNSS Database (DGD)
A central component of Dataworks for GNSS is a relational database with information about stations (sites),
instruments, and GNSS data files from instruments. The software components of Dataworks use the
database for supporting nearly all the Dataworks functionality. Dataworks for GNSS uses a MySQL database
engine with a schema or instance named "Dataworks." Making any changes to the Dataworks schema is not
supported and will likely cause failure of the Dataworks software.

When you obtain the DGD schema from the Dataworks software repository, and startup a MySQL instance
with the Dataworks schema, the fundamental tables will be empty; several of the lookup tables will be
prepopulated with commonly used information such as receiver and antenna models.

The DGD is designed around four central concepts and three fundamental tables plus numerous supporting
tables. The central concepts and fundamental tables are:

metadata: metadata is information about stations, instruments (equipment sessions), and
observational data files. Metadata describes configurations, specifications, and operations.
Metadata is not a data file. You are a person. Your name is metadata about you, but your name is
not you. A picture of a pipe is metadata about that pipe. A picture of a pipe is not a pipe.

station: a known position, where GNSS equipment (at minimum a receiver and an antenna) are
installed for collecting data. The DGD station table is a fundamental table.

equipment session: An "equipment session" is associated with a particular station. An equipment
session is the metadata about the instrumentation at one station during a time span when the
instrumentation collects data and has no modification. The DGD equip_config table is a
fundamental table.

data files: a data file holds observational data values from an instrument at a station, such as a
RINEX obs file from GPS receiver. Data files have GPS receiver observational data, such as epochs
and pseudoranges. Data files are files on disk somewhere. Data files have a file name, a disk path
location, and a size in bytes. Data files are not metadata. Note that streamed data are not currently
handled by Dataworks. The DGD datafile table is a fundamental table.

A diagram of the full database tables and their fields and data types are shown in the figure.

Dataworks for GNSS

10

The DGD holds all the metadata. Station metadata is in table 'station.' The table 'equip_config' contains
information about instrumentation at a station, during "equipment sessions" at each station. A row in the
equip_config table details one equipment session for one station. Each 'datafile' table row has metadata
about one data file from one station during one equipment session which is described in one equip_config
table row. There typically are many data files for each equipment session.

DGD schema diagram.

Dataworks for GNSS

11

Many of the DGD tables use a “primary key’; in this case, each row in the table has a column whose name is
'table_name_id' which can be used to easily reference one particular row in that table. Several tables' rows
may have values that are also foreign keys to other tables, like station_id or equip_config_id.

Each field has its own data type. Data types help insure that correct or allowed values are entered in the
database. For example, you cannot insert "Arecibo Observatory" in the station table field 'four_char_name,'
or "4.64 North" into latitude_north, or "Colombia" into country_id, a number. Any field name with "_id" is a
key in one or more tables, and all "_id" values are integers.

Note that some fields may have value NULL, meaning unspecified. Most fields must have a non-null value.

3.1 Fundamental Tables

Table 'station' details the basic and infrequently modified information about a GNSS observing site.

The commands like "describe station;" are MySQL command line tool commands. MySQL commands end
with ";".

describe station;

+----------------------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------------------------+-----------------+------+-----+---------+----------------+
station_id	int(6) unsigned	NO	PRI	NULL	auto_increment
four_char_name	char(4)	NO		NULL	
station_name	varchar(50)	NO		NULL	
latitude_north	double	NO		NULL	
longitude_east	double	NO		NULL	
height_above_ellipsoid	float	NO		NULL	
installed_date	datetime	NO		NULL	
retired_date	datetime	YES		NULL	
style_id	int(3) unsigned	NO	MUL	NULL	
status_id	int(3) unsigned	NO	MUL	NULL	
access_id	int(3) unsigned	NO	MUL	NULL	
monument_style_id	int(3) unsigned	NO	MUL	NULL	
country_id	int(3) unsigned	NO	MUL	NULL	
locale_id	int(3) unsigned	NO	MUL	NULL	
ellipsoid_id	int(1) unsigned	NO	MUL	NULL	
iers_domes	char(9)	YES		NULL	
operator_agency_id	int(3) unsigned	YES	MUL	NULL	
data_publisher_agency_id	int(3) unsigned	YES	MUL	NULL	
network_id	int(5) unsigned	NO	MUL	NULL	
station_image_URL	varchar(100)	YES		NULL	
time_series_URL	varchar(100)	YES		NULL	
+----------------------------+-----------------+------+-----+---------+----------------+

To create a new row (station) in the station table, note the field names ending in _id. These refer to a row
in some other table; an example is network_id, which must refer to (have a value set to the network_id
value of) a row already entered in the table 'network.' To create a new row in the table 'station,' first you
must have a value for every '_id' value, for example, you must have a value in the 'country' table with a
country_id value to enter in the station table. You cannot first enter some new value for country_id in the
station table, and then add the new value to table country. The "_id" values are created automatically when

Dataworks for GNSS

12

you do a correct insertion in a table. There are ten such "_id' values in table station. The value station_id is
automatically created when you succeed in inserting a new row, with all required values to table station.
The web location of images of a site photograph and of a site position times series plot, if available, may be

stored in fields station_image_URL and time_series_URL. See Appendix A for more about MySQL

commands.

Table equip_config has the metadata about instrument equipment session at the stations.

 describe equip_config;
+-------------------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------------------+-----------------+------+-----+---------+----------------+
equip_config_id	int(6) unsigned	NO	PRI	NULL	auto_increment
station_id	int(6) unsigned	NO	MUL	NULL	
create_time	datetime	NO		NULL	
equip_config_start_time	datetime	NO		NULL	
equip_config_stop_time	datetime	YES		NULL	
antenna_id	int(3) unsigned	NO	MUL	NULL	
antenna_serial_number	varchar(20)	NO		NULL	
antenna_height	float	NO		NULL	
metpack_id	int(3) unsigned	YES	MUL	NULL	
metpack_serial_number	varchar(20)	YES		NULL	
radome_id	int(3) unsigned	NO	MUL	NULL	
radome_serial_number	varchar(20)	NO		NULL	
receiver_firmware_id	int(3) unsigned	NO	MUL	NULL	
receiver_serial_number	varchar(20)	NO		NULL	
satellite_system	varchar(20)	YES		NULL	
sample_interval	float	YES		NULL	
+-------------------------+-----------------+------+-----+---------+----------------+

sample values:

| equip_config_id | station_id | create_time | equip_config_start_time |
| 147 | 37 | 2014-02-12 21:51:45 | 2014-02-12 21:51:45 |

 equip_config_stop_time | antenna_id | antenna_serial_number | antenna_height | metpack_id |
 2014-04-06 23:59:45 | 9 | 5151354359 | 0.0083 | 1 |

 metpack_serial_number | radome_id | radome_serial_number | receiver_firmware_id |
 C5010015 | 3 | | 10 |

 receiver_serial_number | satellite_system |
 5145K79595 | GPS |

Field 'station_id' indicates the station which has or had this equipment session. Field create_time is when
the row was entered in the database. Fields equip_config_start_time and equip_config_stop_time are the
time limits of an equipment session.

Table datafile has the metadata about GNSS data files in this data repository.

Dataworks for GNSS

13

describe datafile;
+------------------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------------------+-----------------+------+-----+---------+----------------+
+----------------------------+-----------------+------+-----+---------+----------------+
datafile_id	int(9) unsigned	NO	PRI	NULL	auto_increment
station_id	int(6) unsigned	NO	MUL	NULL	
equip_config_id	int(6) unsigned	YES	MUL	NULL	
datafile_name	varchar(120)	NO		NULL	
unique_info_id	int(9)	YES		NULL	
original_datafile_name	varchar(100)	YES		NULL	
datafile_type_id	int(3) unsigned	NO	MUL	NULL	
sample_interval	float	YES		NULL	
datafile_start_time	datetime	NO		NULL	
datafile_stop_time	datetime	NO		NULL	
year	year(4)	NO		NULL	
day_of_year	int(3)	NO		NULL	
published_time	datetime	NO		NULL	
size_bytes	int(10)	YES		NULL	
MD5	char(32)	NO		NULL	
URL_path	varchar(120)	NO		NULL	
data_originator_url_domain	varchar(50)	YES		NULL	
+----------------------------+-----------------+------+-----+---------+----------------+

sample values:

| datafile_id | station_id | equip_config_id | datafile_name | original_datafile_name |
| 1923 | 37 | 147 | cn250590.14d.Z | cn250590.14d.Z |

 datafile_type_id | sample_interval | datafile_start_time | datafile_stop_time | year |
 2 | 0 | 2014-02-28 00:00:00 | 2014-02-28 23:59:45 | 2014 |

 day_of_year | published_time | size_bytes | MD5 |
 59 | 2014-03-01 00:00:00 | 675113 | bf963478361cf3fad32daf88c2c5e04c |

 URL_path | data_originator_url_domain |
 ftp://dataworks1/pub/rinex/obs/2014/059/cn250590.14d.Z | www.unavco.org |

Each datafile row has one corresponding station (indicated with value station_id), and one corresponding
equip_config (indicated with value equip_config_id). These values must exist in the database before you
insert a new row in table datafile. The field URL_path is supplied by GSAC to a remote user; it tells where
the datafile is available.

Note that GNSS data files have two kinds of compression, as in the file cn250590.14d.Z above. The "d" in
".14d" indicates Hatanaka compression, a special technique for GNSS files. The ".Z" is another compression,
with the Compress Linux or Unix shell compression program.

3.2 Lookup Tables

Lookup tables hold information to be associated with station, equip_config, or datafile rows. The DGD has
prepopulated rows for these tables. You may need to add rows, which you are free to do with the SQL insert
statement, or other means.

desc datafile_type;

Dataworks for GNSS

14

+---------------------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+---------------------------+-----------------+------+-----+---------+----------------+
datafile_type_id	int(3) unsigned	NO	PRI	NULL	auto_increment
datafile_type_name	varchar(50)	NO		NULL	
datafile_type_version	varchar(50)	NO		NULL	
datafile_type_description	varchar(50)	NO		NULL	
+---------------------------+-----------------+------+-----+---------+----------------+

The mysql command 'select *' shows all the fields in all the rows in a table:

mysql> select * from datafile_type;
+------------------+-------------------------------+-+--+
| datafile_type_id | datafile_type_name | datafile_type_version| datafile_type_description

|
+------------------+-------------------------------+----------------------
| 1 | instrument data file | | Any type or format of native, raw, or

binary file |
| 2 | RINEX observation file | | a RINEX 'o' obs file; may be

compressed |
| 3 | RINEX GPS navigation file | | a RINEX 'n' nav file; may be

compressed |
| 4 | RINEX Galileo navigation file | | a RINEX 'e' nav file; may be

compressed |
| 5 | RINEX GLONASS navigation file | | a RINEX 'g' nav file; may be

compressed |
| 6 | RINEX meteorology file | | a RINEX 'm' met file; may be

compressed |
| 7 | RINEX QZSS navigation file | | a RINEX 'j' nav file; may be

compressed |
| 8 | RINEX Beidou navigation file | | a RINEX 'c' nav file; may be

compressed |
+------------------+-------------------------------+----------------------

Insert a new row for a new data file type if you have other types. Note that data type "RINEX observation
file" may include plain (ASCII) Rinex files, or such files compressed with Hatanaka compression, or
compressed with the Compress Linux utility, or compressed with both compression schemes. You can tell
which kind of file you have with the file extension or final character in the extension.

 describe access;
+-----------------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------------------+-----------------+------+-----+---------+----------------+
access_id	int(3) unsigned	NO	PRI	NULL	auto_increment
access_description	varchar(80)	NO		NULL	
embargo_duration_days	int(6)	NO		0	
+-----------------------+-----------------+------+-----+---------+----------------+					
select * from access;					
+------------+--+					
access_id	access_description				
+------------+--+					
1	no public access allowed				
2	public access allowed for station metadata, instrument metadata, or data files				

Dataworks for GNSS

15

| 3 | public access allowed for station and instrument metadata only |

+------------+--+
Access is a static table; you do not add or alter values in this table. Access table values can be used to hide
information from remote users in GSAC. In Dataworks for GNSS the field 'embargo_duration_days' can be
used to hide information from remote users in GSAC for a period of time. These functions require special
coding in the local GSAC code.

 describe agency;
+-------------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------------+-----------------+------+-----+---------+----------------+
agency_id	int(4) unsigned	NO	PRI	NULL	auto_increment
agency_name	varchar(100)	NO		NULL	
agency_short_name	varchar(10)	NO		NULL	
+-------------------+-----------------+------+-----+---------+----------------+					
select * from agency;					
+-----------+--+-------------------+					
agency_id	agency_name	agency_short_name			
+-----------+--+-------------------+					
0	NOT AVAILABLE	NA			
2	Institut Geographique National				
5	University of Puerto Rico, Mayaguez				
...
+-----------+--+-------------------+
Add a new row to the agency table when needed, for a new station with a new agency.

describe country;
+--------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------------+-----------------+------+-----+---------+----------------+
| country_id | int(3) unsigned | NO | PRI | NULL | auto_increment |
| country_name | varchar(70) | NO | | NULL | |
+--------------+-----------------+------+-----+---------+----------------+
select * from country;
+------------+--------------------------+
| country_id | country_name |
+------------+--------------------------+
2	France
3	British Virgin Islands
4	Panama
5	Montserrat
...
Add a new row to this table when needed, for a new station with a new country. This is done automatically
by Dataworks mirroring software,

describe ellipsoid;
+----------------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------------------+-----------------+------+-----+---------+----------------+
ellipsoid_id	int(4) unsigned	NO	PRI	NULL	auto_increment
ellipsoid_name	varchar(45)	NO		NULL	
ellipsoid_short_name	varchar(10)	YES		NULL	
+----------------------+-----------------+------+-----+---------+----------------+

Dataworks for GNSS

16

select * from ellipsoid;
+--------------+----------------+----------------------+
| ellipsoid_id | ellipsoid_name | ellipsoid_short_name |
+--------------+----------------+----------------------+
1	WGS 84	WGS 84
2	GRS 80	GRS 80
3	PZ-90	PZ-90
+--------------+----------------+----------------------+

describe locale;
+-------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-----------------+------+-----+---------+----------------+
| locale_id | int(3) unsigned | NO | PRI | NULL | auto_increment |
| locale_info | varchar(70) | NO | | NULL | |
+-------------+-----------------+------+-----+---------+----------------+
mysql> select * from locale;
+-----------+--------------------------------------+
| locale_id | locale_info |
+-----------+--------------------------------------+
2	LES ABYMES
3	Anegada
4	Sherman
5	Panama City
...
Locales are place names. The locale_info can be, for example, a place, city, or town name. Add a new row to
this table when needed, for a new station. This is done automatically if needed by Dataworks mirroring
software.

describe monument_style;
+----------------------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------------------------+-----------------+------+-----+---------+----------------+
| monument_style_id | int(3) unsigned | NO | PRI | NULL | auto_increment |
| monument_style_description | varchar(70) | NO | | NULL | |
+----------------------------+-----------------+------+-----+---------+----------------+
select * from monument_style;
+-------------------+-------------------------------+
| monument_style_id | monument_style_description |
+-------------------+-------------------------------+
2	building roof
3	deep foundation pillar
4	deep-drilled braced
...
Add a new row to this table when needed, for a new station. This is done automatically if needed by
Dataworks mirroring software.

describe station_status;
+-------------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |

Dataworks for GNSS

17

+-------------------+-----------------+------+-----+---------+----------------+
| station_status_id | int(3) unsigned | NO | PRI | NULL | auto_increment |
| station_status | varchar(80) | NO | | NULL | |
+-------------------+-----------------+------+-----+---------+----------------+
select * from station_status;
+-------------------+-----------------------+
| station_status_id | station_status |
+-------------------+-----------------------+
1	Active
2	Inactive/intermittent
3	Retired
4	Pending
+-------------------+-----------------------+
This is a static table; you should not need to add to it or alter values in it.

describe station_style;
+---------------------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+---------------------------+-----------------+------+-----+---------+----------------+
| station_style_id | int(3) unsigned | NO | PRI | NULL | auto_increment |
| station_style_description | varchar(80) | NO | | NULL | |
+---------------------------+-----------------+------+-----+---------+----------------+
select * from station_style;
+------------------+---------------------------+
| station_style_id | station_style_description |
+------------------+---------------------------+
1	GPS/GNSS Continuous
2	GPS/GNSS Campaign
3	GPS/GNSS Mobile
+------------------+---------------------------+
This is a static table; you should not need to add to it or alter values in it.

describe antenna;
+--------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------------+-----------------+------+-----+---------+----------------+
antenna_id	int(3) unsigned	NO	PRI	NULL	auto_increment
antenna_name	varchar(15)	NO		NULL	
igs_defined	char(1)	NO		N	
+--------------+-----------------+------+-----+---------+----------------+					
select * from antenna;					
+------------+---------------+-------------+					
antenna_id	antenna_name	igs_defined			
+------------+---------------+-------------+					
2	TRM55971.00	Y			
3	TRM57971.00	Y			

Add a new row to the antenna table when needed. This is done automatically by Dataworks mirroring
software. IGS antennas are named in ftp://ftp.igs.org/pub/station/general/rcvr_ant.tab.

describe receiver_firmware;
+----------------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------------------+-----------------+------+-----+---------+----------------+

Dataworks for GNSS

18

receiver_firmware_id	int(5) unsigned	NO	PRI	NULL	auto_increment
receiver_name	varchar(20)	NO		NULL	
receiver_firmware	varchar(20)	NO		NULL	
igs_defined	char(1)	NO		N	
+----------------------+-----------------+------+-----+---------+----------------+					
select * from receiver_firmware;					
+----------------------+--------------------+---------------------+-------------+					
receiver_firmware_id	receiver_name	receiver_firmware	igs_defined		
+----------------------+--------------------+---------------------+-------------+					
2	TRIMBLE NETR5	4.03	Y		
3	TRIMBLE NETR5	4.17	Y		
4	TRIMBLE NETR5	4.22	Y		

Add a new row to the receiver_firmware table when needed. There is a row for every receiver firmware
field value, even when the receiver_name is the same as in other rows. This is done automatically when
needed by Dataworks mirroring software. IGS receivers are described in
ftp://ftp.igs.org/pub/station/general/rcvr_ant.tab.

describe radome;
+-------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-----------------+------+-----+---------+----------------+
radome_id	int(5) unsigned	NO	PRI	NULL	auto_increment
radome_name	varchar(15)	NO		NULL	
igs_defined	char(1)	NO		N	
+-------------+-----------------+------+-----+---------+----------------+					
select * from radome;					
+-----------+---------------+-------------+					
radome_id	radome_name	igs_defined			
+-----------+---------------+-------------+					
2	NONE	Y			
3	SCIT	Y			
4	SNOW	Y			
...
Add a new row to the radome table when needed. This is done automatically as needed by Dataworks
mirroring software.

describe metpack;
+--------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------------+-----------------+------+-----+---------+----------------+
| metpack_id | int(5) unsigned | NO | PRI | NULL | auto_increment |
| metpack_name | varchar(15) | NO | | NULL | |
+--------------+-----------------+------+-----+---------+----------------+
select * from metpack;
+------------+---------------+
| metpack_id | metpack_name |
+------------+---------------+
| 2 | no metpack |
+------------+---------------+

Add a new row to the metpack table when needed. This is done automatically as needed by Dataworks

Dataworks for GNSS

19

mirroring software.

describe network:
+--------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------------+-----------------+------+-----+---------+----------------+
| network_id | int(3) unsigned | NO | PRI | NULL | auto_increment |
| network_name | varchar(50) | NO | | NULL | |
+--------------+-----------------+------+-----+---------+----------------+
select * from network;
+------------+--------------+
| network_id | network_name |
+------------+--------------+
| 1 | COCONet |
| 2 | TLALOCNet |
+------------+--------------+
Add a new row to the network table if you add a new station in a new network.

3.3 Database Maintenance

Populating and maintaining the database for Dataworks is necessary to operate Dataworks and GSAC.
Maintaining your database for Dataworks is your responsibility. See Appendix A for more detailed hints on
working with the Dataworks database.

Dataworks for GNSS

20

4. Mirroring Station and Equipment Metadata and Data Files from a Remote Data Center
Running GSAC

The Dataworks Mirror Module is code that you can use to copy GNSS data files, and station and instrument
metadata, from a remote GSAC-enabled data repository, such as the UNAVCO GSAC, to populate your
Dataworks installation. This process is called "mirroring." Mirroring copies station and instrument
information, and data files, from a station network or for a list of stations, stored at the remote GSAC
repository. Mirroring is entirely optional. The schematic figure below shows the mirroring functions .

You need not mirror anything from a remote GSAC to use Dataworks. Dataworks can be used to distribute
GNSS information from your GNSS instrument network using Dataworks software to retrieve GNSS
instrument data (Section 5) from receivers, and using GSAC to make it available. If you do not plan to mirror
from a remote GSAC, do not do anything described in this section 4.

For mirroring from a remote GSAC-enabled data repository, once a day two Python scripts,
mirrorStations.py and mirrordata.py, are run automatically by a Linux 'cronjob'. This is described in
section 4.2

While the mirroring code supplied with Dataworks initially uses the UNAVCO GSAC system (mirroring
from UNAVCO), with a few small changes you can mirror from any operating GSAC. The examples here and
in the Python scripts use the UNAVCO GSAC as the remote GSAC.

Note: Dataworks server setup should include creating an account for the user with the operations role, that
is, the user having responsibility to ensure Dataworks day-to-day operations occur as expected. This user is
designated in this documentation as having user name “ops”.

Dataworks for GNSS

21

4.1 Python Script for Updating (Mirroring) the Station & Equipment Information from a Remote GSAC

The Dataworks database for GSAC has information (metadata) about stations and equipment (instruments)
that you wish to provide with GSAC.

To mirror station and equipment information from a remote GSAC, Dataworks uses the
mirrorStations.py script. The Python script file is located at

/dataworks/mirror_station_metadata/mirrorStations.py

The mirrorStations.py script:

 1. during the first-ever run, mirrorStations.py makes the initial population of a Dataworks database
with the stations in the network being mirrored, and all the equipment sessions at each station.

 2. during subsequent runs, mirrorStations.py finds and adds newly-added stations in the network, and
the equipment sessions at those stations.

 3. finds and adds new equipment sessions at any existing station, in every run.

 4. updates existing equipment sessions (db equip_config records), when the metadata was changed at the
remote GSAC. Usually session stop_time is changed daily at active stations, to the end of day, at least in
UNAVCO practice.

For mirrorStations.py the DGD must exist and have the correct schema before you run the script.

The Python script or program is file
/dataworks/mirror_station_metadata_from_unavco/mirrorStations.py

The script inserts new metadata, gathered from the remote agency, about stations, and / or about new
station equipment sessions, to the existing database. This is used both to initially populate an existing
empty database, and also to add new stations, or to add new equipment sessions at stations already in the
database.
This script is run automatically every day by the crontab job. To see the crontab file, in account ops do
command crontab -l.
You can also run the script by hand. The instructions shown here are in the header of the script file itself, if
you need to refer to them.
(some configuration items: the line in the Python file:
satellite_system = "GPS" # default could be for example "GPS,GLONASS"

 # or "GPS,GALILEO" or "GPS,GLONASS,GALILEO"

where the db field "satellite_system" is only changed when you change to receivers with more
constellations. The db field "satellite_system" lists which GNSS constellations are received by your network.
And you can choose logging to screen on or off with values 1 or 2 in the Python code line:
logflag =1 # USE =1 for routine operations; or use =2 to print log lines to screen

With Dataworks for GNSS mirroring, station data used to populate your database is gathered using the
remote GSAC service, in a "GSAC full csv" formatted file. The GSAC query is part of mirrorStations.py
operations. You do not run GSAC queries separately. The Python script mirrorStations.py does it for
you.

The mirrorStations.py is executed with a Linux command like:

 /dataworks/mirror_gps_data/mirrorStations.py stationgroup databasehost gsac-
dbacct gsac-dbpw databasename

Dataworks for GNSS

22

For "stationgroup" you can use a network name employed in the remote GSAC archive (e.g. COCONet or
another). Use local names for the database host name ('databasehost'), db account name ('gsac-dbacct'), db
account password ('gsac-dbpw'), and database name ('databasename") such as Dataworks. So an actual
command could be:

/dataworks/mirror_gps_data/mirrorStations.py COCONet localhost gsacdb gsacpw

Dataworks

Alternately, for 'stationgroup' you can use, for separate stations, not a network name, but inside one pair of the
quotation marks " ":

 a. a single station's four char ID like "POAL" in " ";

 b. semi-colon separated list of four char IDs, in " " separated with semi-colon ; (not comma) like
"p123;p456" ;

 c. wildcards using the * character, like "TN*" in " ".

So for the stationgroup argument, put any or all of a. thru c. in one string with no spaces in " ", like
"POAL;P12*;TN*" . The semi-colons separate the items in stationgroup argument. Upper case and lower
case in station four char IDs are the same in GSAC use. Wildcards with the "*" between characters, like P*X,
do not work.

So a purely hypothetical command is:

/dataworks/mirror_station_metadata/mirrorStations.py

"PALX;PHJX;PJZX;PLPX;PLTX;PTAX;PTEX" localhost gsacdb gsacpw Dataworks

to add and/or update those seven stations metadata in the dataworks database.

Use this option with caution; you can add a lot of stations not in your network to your system with one
simple command.

If you make an incorrect addition, you can remove those rows from the database. First delete the incorrect
new rows from the equip_config table for the incorrect stations, and then delete selected rows from the
station table, with your database editor tool.

The mirrorStations.py script makes makes a log file named
/dataworks/logs/mirrorStations.py.log.nn,

where nn is the day of month number (00 to 31).

Log files are overwritten once a month.

Look at the log file /dataworks/logs/mirrorStations.py.log.nn after each run. Look for errors noted in lines
with the exact word PROBLEM and fix any problems.
Normal log file lines when the station (station table rows) and equipment sessions (equip_config table rows)
are already in the database are like this example:
******* Check station POAL

 Next equip session data set (line): POAL,POAL_TNET_MX2013,19.1187,-

98.6552,3992,shallow foundation pillar,

 ,2014-08-15T14:30:30,2014-11-

23T23:59:45,TRM57971.00,NONE,5000112724,0.5,0.0000,0.0000,TRIMBLE

NETR9,4.85,5137K78333,15,Altzomoni,,Mexico,,,,1

 Antenna name TRM57971.00 is a valid IGS name, and in the IGS file

rcvr_ant.tab

 RADOME name NONE is a valid IGS name, and in the IGS file rcvr_ant.tab

 Receiver name TRIMBLE NETR9 is a valid IGS name, and in the IGS file

rcvr_ant.tab

 This input equip_config session for station POAL has equip_config_start time=

2014-08-15T14:30:30 _stop time=_2014-11-23T23:59:45

Dataworks for GNSS

23

 Already have station POAL in the database.

 Look for this equip config record in the db with sql SELECT

equip_config_id,equip_config_start_time,equip_config_

 stop_time from equip_config where station_id= 1 and equip_config_start_time=

'2014-08-15T14:30:30'

 This session # 36 is already in the db.

 and the session start and stop times match. Go try next input data line.

******* Station POAL is up-to-date in the database (station count so far is 1)

When a new equip_config row is added to the database, the log file is like:

 Next equip session data set (line): VRAI,Veragua__CRI2012,9.9249,-

83.1906,444.28,building roof,,2014-12-03

 T00:00:00,2014-12-

08T23:59:45,TRM59800.00,SCIT,5208354391,0.0083,0.0000,0.0000,TRIMBLE

NETR9,4.85,5114K74710,15,Cano Negro,,Costa Rica,,,,,WXT520,H3130004,135

 Antenna name TRM59800.00 is a valid IGS name, and in the IGS file

rcvr_ant.tab

 RADOME name SCIT is a valid IGS name, and in the IGS file rcvr_ant.tab

 Receiver name TRIMBLE NETR9 is a valid IGS name, and in the IGS file

rcvr_ant.tab

 rcvsampInt = _15

 metpackname = _WXT520_ metpackSN =_H3130004_ metpack_id=1

 This input equip_config sesssion for station VRAI has equip_config_start

time= 2014-12-03T00:00:00 _stop time=_2014-12-08T23:59:45

 Already have station VRAI in the database.

 Look for this equip config record in the dq with sql ...

 SELECT equip_config_id,equip_config_start_time,equip_config_stop_time from

equip_config where station_id= 116 and equip_config_start_time= '2014-12-

03T00:00:00'

 Insert this new equipment session into the db with SQL:

 INSERT into equip_config (station_id, create_time, equip_config_start_time,

equip_config_stop_time, antenna_id, antenna_serial_number, antenna_height,

radome_id, radome_serial_number, receiver_firmware_id, receiver_serial_number,

satellite_system,sample_interval) values (116, '2014-12-09T21:42:12', '2014-12-

03T00:00:00', '2014-12-08T23:59:45', 12, '5208354391', 0.0083, 4, ' ', 15,

'5114K74710', 'GPS', 15)

 Inserted a new equipment session into the db

There is a summary at the end of the log file; here is a typical daily result:

 SUMMARY of mirrorStation.py processing:
 No new stations added.

 No new equipment sessions added.

 There are 109 stations in the database.

 There were 412 station - equipment sessions matches in the database.

 Updated 66 equip config table stop times.

 Complete at Thu, 22 Jan 2015 19:10:57 +0000 UTC

If mirroring added a new station, you must add some station metadata by hand to the database in the
"station" table, equip_config table and to other tables. These values are not supplied by a remote GSAC.
Here is how:

The metadata needed is the agency_id numbers for two fields in the new station table row. Find the
agency_id numbers in the agency table.

mysql> select * from agency;

+-----------+--------------------------+-------------------+

| agency_id | agency_name | agency_short_name |

Dataworks for GNSS

24

+-----------+--------------------------+-------------------+

| 1 | UNAVCO | UNAVCO |

| 2 | UNAM | UNAM |

| 3 | Universidad de la Sierra | |

+-----------+--------------------------+-------------------+

If the names of the agency or agencies you need are not in the agency table, add them with a mysql insert
command. There are two agency_id numbers in each station table row.

Add the required agency_id numbers to the new station table row, like this:

update station set operator_agency_id=<AID1> where four_char_name="ABCD";

update station set data_publisher_agency_id=<AID2> where four_char_name="ABCD";

Substitute valid agency_id number values for the variables <AID1> and <AID2>.

If mirroring added a new equip_config row, you must add some metadata by hand to the database in the
equip_config table. These values are not supplied by the UNAVCO GSAC.

The metadata needed is metpack_id, metpack serial number, and the radome serial number.

Find the equip_config_id for the new equip_config row (like 333) by looking in the mirror station log file.

Then do two commands like this, but with the correct serial numbers:

update equip_config set metpack_serial_number="123456789" where equip_config_id=333;

update equip_config set radome_serial_number="98765432" where equip_config_id=333;

Also you must add the metpack_id to the same new equip_config row. Look in the metpack table to find the
metpack name in use:

mysql> select * from metpack;

+------------+--------------+

| metpack_id | metpack_name |

+------------+--------------+

| 2 | WXT520 |

+------------+--------------+

If a metpack name is not in that table, add it to the metpack table with a mysql insert command.
Note the metpack_id for the metpack name. Add that number to the equip_config row, like this:
update equip_config set metpack_id =<MN> where equip_config_id=333;

where <MN> is the correct metpack_id, an integer.

4.2 Daily Run of mirrorStations.py by Crontab

mirrorStations.py is run once a day by a crontab job. To see the crontab file, in account ops run the
command crontab -l.

The example below shows two lines in the crontab file for account 'ops' are as below (00 10 * * * means
10:00 UTC every day):

00 10 * * * /dataworks/mirror_station_metadata_from_unavco/mirrorStations.py

TLALOCNet localhost dbacct dbacctpw Dataworks

15 10 * * * /dataworks/mirror_gps_data_from_unavco/mirrorData.py localhost dbacct

dbacctpw Dataworks 4daysback today TLALOCNet

Dataworks for GNSS

25

The run time for mirrorStations.py is in this example10:00:00. The process will complete in about 2
minutes for 100 stations.

Note in this example crontab runs mirrorStations.py and then mirrorData.py, in the correct order, 15
minutes apart.

4.3 Handling mirrorStations.py: Catching Up

If your Dataworks has been offline or shut down for more than a day, run mirrorStations.py to catch up
with the data you have not mirrored, e.g.:

/dataworks/mirror_station_metadata/mirrorStations.py COCONet localhost gsac-dbacct

gsac-dbpw Dataworks

where 'gsac-dbacct' is the database account name for GSAC, 'gsac-dbpw' is the data base account password,
and 'Dataworks' is the name of the MySQL database used by GSAC. 'COCONet' is an example for a network
name in the remote GSAC you are mirroring.

You then run mirrorData.py as described below.
If you run mirrorStations.py by hand, the screen output looks like

./mirrorStations.py COCONet localhost dbacct dbacctpw Dataworks

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

44313 303 44313 129k 0 0 1822 0 --:--:-- 0:01:12 --:--:-- 6814

This output is made by the GSAC request. You do not need to understand it, or to do anything with it.

4.4 Python Script to Mirror Data Files from a Remote GSAC and to Update the Database

Dataworks for GNSS can "mirror" (copy) GNSS data files from a remote GSAC with a Python script, and
populate and update the Dataworks table datafile in the database.

The DGD must have complete, correct, and up to date metadata for all stations, and for all the equipment
sessions at all stations, before you can successfully mirror data files. Sections 4.1 – 4.3 cover these topics.

The Python script to mirror (copy) data files from a remote GSAC is

/dataworks/mirror_gps_data/mirrorData.py

This script populates the DGD data files metadata (in table 'datafile'), and also copies the complete GNSS
data files to your computer from the remote GSAC. You can also run the script by hand. The instructions
shown here are also shown in the header of the script file itself, if you need to refer to them there.

You should run the script mirrorStations.py every time you run mirrorData.py, before you run
mirrorData.py, to ensure changes at stations being mirrored are captured.

Before you run mirrorData.py, you must configure it. Open the file mirrorData.py in an editor; find the
lines labeled “CONFIGURATION” in the header and do those steps.

"Crontab" will run this script automatically every day, typically at about 10:00 UTC. The exact time is not
important. Do the Linux command crontab -l to see for example (00 10 * * * means 10:00 UTC every day):

00 10 * * * /dataworks/mirror_station_metadata_from_unavco/mirrorStations.py

TLALOCNet localhost dbacct dbacctpw Dataworks

Dataworks for GNSS

26

15 10 * * * /dataworks/mirror_gps_data_from_unavco/mirrorData.py localhost dbacct

dbacctpw Dataworks 4daysback today TLALOCNet

The mirrorData.py command run by crontab uses the two words "4daysback today" (or "Ndaysback
today") which are special input arguments to cover the recent days. See code in the Python file dealing
with the exact words 'daysback' and 'today.'

Also, you can run this program by hand with commands like this, for example, to get data files for a date
range you want to update, for example, for this one-month date range shown:

./mirrorData.py dbhost gsac-dbacct gsac-dbpw dbname 2014-04-01 2014-04-30

stationgroup

dbhost is like 'localhost', gsac-dbacct and gsac-dbpw are the MySQL account names and password to write
to the database named "Dataworks", and stationgroup is the remote GSAC archive name for a network, like
COCONet.

For a station name list in place of a network name for stationgroup, these inputs are accepted within a
single pair of quotation marks ””:

a) a single station's four char ID like "POAL" (in " ").

b) semi-colon separated list of four char IDs, separated with ; semicolon (not comma) like
"p123;p456". The semi-colon separates the items in station group list.

c) wildcards using * like "TN*"

So for the station group, put any or all of a. thru c. in one string with no spaces, like "POAL;P12*;TN*" .

Upper case and lower case in station four char IDs are the same in GSAC use, so poal is interpreted POAL.

A hypothetical command to add data files from 7 sites is:

/dataworks/mirror_gps_data/mirrorData.py localhost gsac-dbacct gsac-dbpw Dataworks

4daysback today "PALX;PHJX;PJZX;PLPX;PLTX;PTAX;PTEX"

Before you run this, you must first do the equivalent command with mirrorStations.py for these 7 sites.
If you do wish to mirror those stations' data files routinely, simply add this one command to your crontab
file for daily operation.

As an example of what to expect for time demands, with a good internet bandwidth this script takes several
hours to get all GPS files from 100-some COCONet stations for one recent year. But a daily update takes
only a few minutes.

The script makes makes a log file named /dataworks/logs/mirrorData.py.log.nn

where nn is the day of month number. Routine processing details go to the log file. Always look at the log
file every day for lines marked "PROBLEM" and deal with whatever happened.

For a log file example, the top of a mirrorData.py log file is like:

 Process to search for and download gps data files at UNAVCO, from _2014-12-05_

through _2014-12-12_

 Log file describing processing by mirrorData.py

 mirrorData.py run started at 12Dec2014_17:09:06

 ***** ***** Look at the log file /dataworks/logs/mirrorData.py.log after each run.

Look for errors in lines noted with the word PROBLEM ***** ***** *****

 Get list of sites from the UNAVCO GSAC server. The Linux command is

Dataworks for GNSS

27

 /usr/bin/curl -L "http://www.unavco.org/data/web-

services/gsacws/gsacapi/site/search/sites.csv?output=site.csv&site.group=TLALOCNet"

 > dataworks_sites_short.csv

 UNAVCO GSAC site search query succeeded. Have site list dataworks_sites_short.csv
with 12 stations.

 1 New Station POAL:

 Get metadata about all GPS data files from station POAL in the given date range,

with linux command

 /usr/bin/curl -L "http://www.unavco.org/data/web-

services/gsacws/gsacapi/file/search?file.sortorder=ascending&site.code=POAL&file.da

tadate.from=2014-12-

05&output=file.csv&site.name.searchtype=exact&site.code.searchtype=exact&limit=5000

&file.datadate.to=2014-12-12&site.interval=interval.normal" > data_file_info.csv

 Count of gps datafiles for this station from UNAVCO GSAC in this time interval: 35

 station POAL; this data file's metadata from UNAVCO GSAC is

 POAL,GNSS RINEX Observation (Hatanaka Unix

Compressed),9214946fee511fbbed4723f1e7efc360,733341,2014-12-08 00:00:00,ftp://data-

out.unavco.org/pub/rinex/obs/2014/341/poal3410.14d.Z,2014-12-07 00:00:00,2014-12-07

23:59:45,0.0,POAL_TNET_MX2013

 Load mirror the dataworks db with the gps file metadata, and download the gps

file from UNAVCO

 Already have metadata for this datafile, poal3410.14d.Z, in the db datafile

table, for station_id 1, at datafile_id =5772

 Download (or verify having) the data file from ftp://data-

out.unavco.org/pub/rinex/obs/2014/341/poal3410.14d.Z

 No problems occurred running wget command wget -nv -c -x -nH -P /data

ftp://data-out.unavco.org/pub/rinex/obs/2014/341/poal3410.14d.Z

The log file ends with a summary like this:

 Summary of mirroring data files from UNAVCO, during 2015-01-17 to 2015-01-22
 number of COCONet stations in the UNAVCO archive checked for GNSS data files

 in this time interval: 109

 obs files totalsize= 233.668 MB

 nav files totalsize= 10.672 MB

 met files totalsize= 5.873 MB

 total size all files= 250.213 MB or 0.244 GB

 obs file count= 365

 nav file count= 338

 met file count= 257

 count of all required data files found in this time interval 960

 About new files to download:

 db: count of data files' info TO insert in the db 170

 db: count of data files' info Inserted in the db 170

 db: count of data files' info FAILED inserts in the db 0

 files: success count of data files to download from UNAVCO,

 or already downloaded: 952

 files: count of wget problems encountered 5

 Completed mirrorData.py at Thu, 22 Jan 2015 19:18:38 +0000 UTC

Every time mirrorData.py runs, it writes a new log file /dataworks/logs/mirrorData.py.log.nn. Look
at the log file /dataworks/logs/mirrorData.py.log.nn after each run. Look for errors noted in lines
with the exact word PROBLEM and deal with any problems.

The error "wget returned status=2048" means there was a temporary problem getting this file from
UNAVCO. In virtually all cases the same wget download will be repeated the next day for this same file, and

Dataworks for GNSS

28

get it. Tries are made five days in a row. If you want to make sure, run the wget command listed in the log
file on a command line.

4.5 Daily Run of mirrorData.py by crontab

mirrorData.py is run once a day by a crontab job.

The example below shows two lines in the crontab file for account 'ops' are as below (00 10 * * * means
10:00 UTC every day):

00 10 * * * /dataworks/mirror_station_metadata_from_unavco/mirrorStations.py

TLALOCNet localhost dbacct dbacctpw Dataworks

15 10 * * * /dataworks/mirror_gps_data_from_unavco/mirrorData.py localhost dbacct

dbacctpw Dataworks 4daysback today TLALOCNet

The run time for mirrorData.py is in this example10:15:00. The process will complete in about 2
minutes for 100 stations.

Note in this example crontab runs mirrorStations.py and then mirrorData.py, in the correct order, 15
minutes apart.

4.6 Handling mirrorData.py: Catching Up

Look at the log file /dataworks/logs/mirrorData.py.log.nn after each run. Look for errors noted in
lines with the exact word PROBLEM and fix any problems. Every time mirrorData.py runs, it writes a new
log file /dataworks/logs/mirrordata.py.log.nn. nn is the day of month number.

If your Dataworks has been offline or shut down for more than a day, run mirrorData.py to catch up with
the data you have not mirrored.

First you run mirrorStations.py as described above. Then run mirrorData.py like:

/dataworks/mirror_gps_data/mirrorData.py localhost gsac-dbacct gsac-dbpw Dataworks

2014-12-18 2105-01-05 COCONet

where the date range (like "2014-12-18 2105-01-05") spans the days the mirroring was not done.

Dataworks for GNSS

29

5 Dataworks Operations with Local GNSS Stations

The Dataworks Download, Ingest, and Export software enables users to create a data
repository populated by data from a GNSS network managed and maintained at the local
level. These modules require the DGD, both for their own successful operation and for
seamless integration with the GSAC. Using these Dataworks modules enables users to create
a data repository with public web services for data access, populated by data from a GNSS
network managed and maintained at the local level.

The Dataworks data download and processing suite is composed of three components to
help manage the workflow when downloading GNSS data files from a remote station or
network of remote stations, validating the data transfer and registering each individual
station’s data files in the database provided as part of the software suite.

The following diagram displays the functional interaction between the processes and
components of the software suite, with expanded explanations describing the performance
of the manager, exporter, and ingester processes in the following sections.

FIGURE 1.

 The downloadManager script uses unique station and receiver configurations to

download files from remote receivers and store the files in a local station/data
directory. An internet connection to the receiver is required.

Dataworks for GNSS

30

 The downloadExporter scans station directories for completed file downloads,
building a list of files to mine for meta-data in order to build a diary file. The diary
file is used to register the file and associated meta-data in the dataworks database.
Once the downloadExporter has built the individual diary file it moves the download
file to the systems ftp storage directory so external users can retrieve the data from
the server.

 The downloadIngester is responsible for scanning for new file diaries and
registering those new downloads in the dataworks database to make the files
available to the GSAC service.

Appendix B details a checklist of actions to complete for the initial setup of the
downloadManager and necessary checks and changes required for equipment session
changes.

5.1 Add a New Station and/or a New Equipment Session to the Database

To successfully add new GNSS data files from a station to your Dataworks repository, you
will need to register information about the station into the database table station (as
described in the database schema section of Dataworks documentation), including details
about the instrumentation (receiver, dome, antenna) during the time frame the data is being
collected (an "equipment session" row in the table equip_config linked to the station).

To minimize the effort and add consistency to the process of adding a new station and
equipment session to the database, it is recommend users utilize the Python script and
template file supplied with Dataworks:

dataworks/db_aids/insertNewStation.py

Using this script avoids having to make detailed MySQL commands for this case of database
maintenance.

Complete instructions for using this script are contained in the script file's header, which a
user may read by opening the file with a text editor. The steps to use this script for adding a
station are as follows:

 Gather the necessary information (metadata) for establishing a new station and

equipment session, most importantly the four character ID associated with the
station. This value cannot duplicate the four character ID of any station already
registered in the database. A simple search of the web interface can assist the
user in identifying possible values.

 The user should select a station name, and collect values for the latitude,

longitude and ellipsoid_height of the station. They should know the monument
style (e.g. pillar, deep drilled braced, building roof) of the station, and have a
date and time selected for putting the station into service. The user should also
collect all the pertinent equipment data, including the antenna type, the antenna
offset in height from the reference mark, the antenna serial number, the dome

Dataworks for GNSS

31

type, and information about the receiver including type, serial number,
firmware version and sample interval.

 Finally the user will need to provide data on the organization name, the location

name and country along with the associated network name. The user may also
collect information for an optional metpack (meteorological data collection) and
its serial number.

With the data collected a user can now utilize a text editor to create a file containing a
comma separated values in the db_aids directory, which needs to contain all the information
required for completing a station insertion into the database. Multiple stations may be
entered in a single file with each station separated by a blank line.

The formats for the fields in the file are as follows:
4_char_ID [type=string(4)], station_name [type=string(50)], latitude [double],

longitude [double], ellip_height [unit='m'], monument_description

[type=string(70)], IERSDOMES [type=string], session_start_time [type='date'

format='yyyy-MM-ddTHH:mm:ss zzzzz'],

session_stop_time [type='date' format='yyyy-MM-ddTHH:mm:ss zzzzz'],

antenna_type [type=string(15)], dome_type [type=string], antenna_SN

[type=string], Ant_dZ [unit='m'], Ant_dN [unit='m'], Ant_dE [unit='m'],

receiver_type [type=string(20)], firmware_version [type=string], receiver_SN

[type=string], receiver_sample_interval, locale_name [type=string(70)], country

[type=string(70)], agency_name [type=string(100)], network_name

[type=string(50)], metpack_name [type=string(15)], metpackSN [type=string]

An example file, station_equip_data.csv, has a line:

S123,test station 123,16.2623,61.5275,25.67,building roof,97103M001,2010-08-

27T00:00:00,0000-00-

00T00:00:00,TRM55971.00,NONE,1440911917,0.0000,0.0000,0.0000,TRIMBLE

NETR5,4.17,4917K61764,30,LES ABYMES Guadeloupe,France,Institut Geographique

National,COCONet,no metpack,,

NOTE: NO COMMAS or APOSTROPHES are allowed in any of the field values. Using
these prohibited characters will cause an error in the insert script and will fail to load
your station data into the database. Also note the use of the date 0000-00-
00T00:00:00 to indicate that the station_stop_time is undefined is allowed for a new
station (i.e you are actively collecting data from this station).

With the data collected and the file complete users can run the command:

./insertNewStations.py station_equip_data.csv localhost dbacctname dbacctpw

dbname

Where the first argument is the comma separated file name, the second points to the name
of the local machine, the dbacctname is the name of the database account used to log into
the database, along with dbacctpw for the password and finally, dbname is the name of the
database, such as DATAWORKS_TEST. Information from the script process is printed on the
screen and problems encountered are registered in the log file:

Dataworks for GNSS

32

Results_dataworks_station_equip_mysql_insertions_yyyymmdd_hhmmss.txt

Common errors with registering station and equipment session data are missing values in
mandatory fields within the csv list (only metpack data is optional), or fields in the file are
created with too many characters to register in the database. In the case of errors
registering a station, users should refer to the results log file for trouble shooting
information and carefully check their values against the format fields to ensure correct data
entry.

5.2 Downloading GNSS Station Data Files and Associated Population of the Dataworks
Database

The Download Manager

The function of the download manager included as part of the Dataworks software package
is to provide processing to automate remote GNSS station downloads as a data input source
for database ingest which supports the archive process within Dataworks. The download
manager software components are located in the dataworks primary users home directory.
This file package can be accessed either directly through login on the computer platform
itself or via a remotely hosted connection such as an X windows enabled terminal (xterm)
using the ssh application or appropriate X hosting software for graphical interfaces. (See the
Dataworks Administrators Guide for assistance with setting up an interface to the local
server.)

The only receiver types currently supported by the download manager are the Trimble
NetR9 and NetR5 models. To effectively establish a connection with the receiver the user
should be familiar with the setup of the Trimble receiver and have access to the users
manual. An electronic copy of the NetR9 receiver manual is provided in the supportDocs
directory for reference purposes. Establishing a station to utilize FTP transfer and a
configuration compatible with a NetRS receiver is possible such that users can download
Trimble’s binary format directly from the NetRS, but the additional steps needed to make
these files integrate with Dataworks would be the user’s responsibility. Further support for
new or additional receivers, such as the NetRS, will be integrated into Dataworks on a case-
by-case basis.

The download manager utilizes the wget utility to transfer files from the receiver on a user
established schedule set through configuration file utilities provided in the Dataworks
package. The download manager requires that the receiver can be reached by an Internet
connection. As the Trimble NetR9 is a highly configurable receiver the download manager
lets the user establish multiple configuration files for each receiver session setup in order to
support several varieties of automatic download management. Internet connectivity
provides the user the ability to connect to the Trimble receiver with an ordinary web
browser to help the user establish correct receiver operation and to provide a fast and
effective means of gathering setup information for configuring the automated download
process.

The following screen capture is an example of using the Trimble web interface to access the
receiver and highlights the data that user will need to gather from the receiver or the user
manual to set up the download manager.

Dataworks for GNSS

33

FIGURE 2a.

Dataworks for GNSS

34

FIGURE 2b.

In the next portion of this users manual the reader can follow along with the steps to setup a
receiver type and station download schedule, both necessary steps to complete before
activating the download manager script. Once these configurations are correctly
established the download manager can run continuously to retrieve station files by a
prioritized schedule, which will be covered further when discussing the download
managers operation.

The first step to the setup operation requires the user to log into the Dataworks server
(using the xterm software and ssh utility to connect to the server or directly logging in via
the hardware console. NOTE use ssh –Y if your remote console is configure to use X
windows forwarding to provide graphical interfaces).

Once logged in to the server, navigate to the dataworks/lib directory to begin manager
setup. The library contains utility scripts used to assist the user to customize the
configuration of the download manager. The first step is to configure your receiver settings
using the script changeReceiverType.py. This is a python script that assists you in correctly
configuring the download requirements for a Trimble NetR9 receiver session.

Dataworks for GNSS

35

Typing the command:

changeReceiverType.py --help

Will bring up the help feature for the command:

usage: changeReceiverType.py [-h] [-vis] [-update] [filename]

Used to add/update station receiver configuration sets to dataworks

functionality

positional arguments:

 filename filename REQUIRED for use with update option

optional arguments:

 -h, --help show this help message and exit

 -vis use the graphical interface for input.

 -update update the file configuration content.

The user has options to start a graphic interface with the –vis option (provided X hosting is
configured correctly) or may navigate a text interface if the option flag is not set. The user
also has the option of using the script to change a previous receiver configuration by setting
the –update flag. If the user doesn’t know the file name they wish to update, a full set of
available files you may modify are stored in the library directory under the conf directory
(dataworks/lib/conf). The use of the -update flag without a matching receiver
configuration file will produce an error and repeat the help message.

Using the graphic interface produces a form to fill in with the appropriate receiver session
information, which correctly configures the receiver type for download manager to access
the desired file sets. The following image shows an example based of the configuration
parameters defined in the previous figure.

Dataworks for GNSS

36

FIGURE 3.

Users will add the appropriate data to the form or text fields to complete a receiver session
configuration. The receiver model, a sub group descriptor for the session, the data path as
documented by the receiver manual or directly from the web interface to the receiver, the
desired download interval for data in minutes, the file format, and the file extension are all
required inputs. The user may also add comments to the comments field to describe the
session configuration and reasons that these data values were utilized.

In our example above using the Trimble web interface information we can use the displayed
values to set up our receiver session settings. Notice that the receiver setup uses numeric
replacement characters to set a download pattern for the receiver. In the example above
the numerical year is replaced with the substitution notation YYYY, the numerical month
with the substitution notation MM, the numerical day with substitution DD and so on. In
our case since the file is meant for daily download (1440 minutes) the hour and minute
characters are the specific digits used in the file name on the receiver. If the receiver is
providing updates on an hourly basis and using letters to differentiate files the special case
replacement string cidx can be used and will be replaced by the characters [a-x] depending
on the hour of the day (cidx means character index).

The download manager uses pattern substitution to create the file specific name from this
template before it attempts to download data from the receiver. It is critical you get the
pattern correct so the manager can use the pattern matching as expected to download the
current data set from the receiver. If a user wants to use more frequent file download
intervals such as hourly then the pattern matching template would use the characters HH
for digit replacement in the template, and use the characters mm if they were to use a
higher download rate for receiver sessions that output files at the mm minute interval. For
data sets at a resolution more frequent than 30-minute intervals it would be a best practice
to find another retriever solution such as wget to connect to the receiver and capture
streaming data into a file.

Dataworks for GNSS

37

Once a user clicks the update button a configuration file is established for the receiver
session. To help keep configuration of receiver types from becoming confused only one
receiver session may be added at a time. The use of update will continue to change
information for that receiver session only. Additionally once update is clicked the first time,
changing the first two fields of the form will no longer have any effect on establishing a new
receiver session. The user must quit and start the program again if they want to add or
change another receiver session type.

Using the command changeReceiverType.py without any options will bring up text prompts
to add the same information to create a receiver session configuration file. For removing
old configuration files users may utilize a command line option in an xterm or work through
a file manager to navigate to the dataworks/lib/conf directory and delete the desired
configuration file(s). Manual deletion methods are deliberate to keep from wiping out
configuration files through an accidental click of a mouse.

Once the user has established one or more receiver session configurations they are ready to
set up station download configurations. This interface and command works in a similar
manner to the receiver configuration.

Typing on the command line:

changeStation.py --help

This will bring up the help features for the command:

usage: changeStation.py [-h] [-vis] [-update] [staID]

Used to add/update station configuration sets to dataworks

functionality

positional arguments:

 staID UNIQUE Station ID REQUIRED for use with update option

optional arguments:

 -h, --help show this help message and exit

 -vis use the graphical interface for input.

 -update update the file configuration content.

Every receiver configured to record data is set up with a unique station ID or a receiver
serial number as show in figures 2a & 2b. This unique identifier is utilized to create a
specific station configuration file to collate data storage. This identifier will be used to
create a RINEX file storage directory for each station inside the dataworks/stations/
directory. This identifier must also correspond to a station ID (four character ID) correctly
registered in the database, as described in the previous section. In the instance where the
user utilized the receiver serial number as the station ID the configuration permits the use
of an alias which maps the receiver serial number to the four character ID used as the
primary identifier in the dataworks database.

Using the –vis flag can bring up a station entry form where you fill in the data necessary to
uniquely identify the station, set its receiver session type, fill in its Internet address and its

Dataworks for GNSS

38

download priority and define the number of days of data you will want to retrieve. Also if
the receiver is set up with authentication required you will enter the username and
password needed to download data. If you want to learn more about the authentication
function of your receiver please see the receiver user manual.

FIGURE 4.

Again using the –update flag will set the configuration for a single station as defined by the
station id and store it in the stations directory as previously discussed. The current
download manager only uses the IP or URL connection type to download data via the http
protocol. In its current configuration the download manager will use either type to indicate
the http method of transfer and doesn’t discern between the connection types at this time.
Future versions of the download manager have the potential to implement upgrades for
PPP or an FTP connection for data downloads at a date yet to be determined.

Also, as with adding a receiver, using the command changeStation.py without any command
arguments will run the text version of the form for new station entry. If you wish to remove
a station permanently from the downloader you can delete the stationID directory and all
its contents from the dataworks/stations directory. As before removal of stations is a
manual process by decision, and requires the user to either use command line options or a
file manager to remove those stationID’s from the download manager’s configuration.

With the configuration files and directories for one or more stations set, the download
manager is capable of using these files to automatically retrieve the stations according to
priority and schedule. When started the download manager scans the stations directory
and creates a list of all stations that have the download type of IP or URL. Setting a station
to a data type besides URL or IP ensures that the station will not be included in the

Dataworks for GNSS

39

download, a convenient feature for station management if a user needs to suspend
downloads from a station for a period of time.

After a prioritized download list is created the download manager scans the stationID
directory inside the stations directory. It checks for the existence of a [stationID].active file
in the directory indicating that a download manager is already collecting data for that
station. It also checks for a [stationID].last file to determine the last time data was collected
from the station. Using the configuration file and the last successful download file, the
download manager builds a list of files for the receiver format template based on the
current date and time in order to retrieve current data from the receiver and place in the
[stationID]/data directory.

Once the targeted file list is built, the download manager starts the utility wget as a separate
process to the download manager script. The wget utility is responsible for independently
managing the data download from one receiver at a time. The wget utility keeps a log file in
the data directory for each download reporting its overall progress. When wget starts a
download it labels the download file [filename_from_template].tmp to indicate that the file
is incomplete. When wget signals it has completed its attempt to download a file, the
download manager will validate the file is complete and then rename it to
[filename_from_template].CRX or [filename_from_template].RNX to indicate a complete
formatted file was downloaded from the receiver. The current configuration of the
download manager is set to default to request HATANAKA compressed RINEX version 2.11
from the Trimble NetR9 receiver. Changing the appropriate parameters in the
downloadManager configuration files allows a user to download standard RINEX 2.11 data
formats. Additional download capabilities may be added with furture updates to the
software.

After the RINEX files are downloaded successfully and validated as complete, they are
removed from the download list and the last successful scheduled download file is updated
by the manager. If a user is having problems downloading data from a receiver at a specific
station they should check for a [filename_from_template].wget.log file in the specific
stations data directory (dataworks/stations/[stationID]/data) to search for clues regarding
issues with downloading data.

The download manager in Dataworks is capable of controlling how many downloads to
individual stations it will run at one time and the user can tune this value by changing
settings in the download manager configuration file. The configuration file is a JSON (Java
Script Object Notation) formatted file, which can be read by a text editor and modified to
suit the users preferences. If the server has a limited bandwidth users may wish to tune this
number to a lower setting to test download performance. If the process of downloading
stations takes longer than desired, the user may wish to increase the number of
simultaneous downloads to experiment with decreasing download times and improving
data access. Setting this value to a number higher than the number of stations you need to
download from will have no effect on improving download times.

The following line describes the default setting for the download manager configuration file:
{"compact": true, "dlPause": 60, "maxProcess": 5, "terminate": false,

"aliveReport": 20, "dlType": ["IP", "URL"]}

Dataworks for GNSS

40

The first parameter controls the type of file download. Setting compact to true indicates the
user desires to download files as compact RINEX to match the data format provided by the
Dataworks mirroring capabilities from the UNAVCO archive. Setting the value to false will
download the files in standard RINEX 2.11 format and other pieces of the management
software will store them uncompressed in the Dataworks ftp archive.

In the case that the download manager has passed out a controlled number of downloads to
wget it will pause and wait for those downloads to finish before it requests further
downloads. This dlPause configuration determines how long this wait period holds before
the manager resumes it’s processing again. The period of one minute is a default value but
the user may tune the pause time based on station configuration. If the download manager
is retrieving files once a day you may wish to increase the pause time to keep the manager
inactive for a longer period of time. A long pause time will mean that when the manager is
on a rest cycle it will not respond to stop requests until that cycle is over. As a guide its best
practice to keep the pause period to a time about 1/5th to 1/10th the time between file
downloads to keep the manager responsive, the log files compact, and the data timely, while
the system overhead remains low. The aliveReport variable controls how often the
downloadManager makes a log entry to update the software status. By default with a one-
minute pause time and 20-cycle aliveReport the software will update the log entry about
once every 20 minutes to indicate that it is still working.

The maxProcess value determines how many stations will get downloaded at one time, and
as mentioned can be tuned according to your bandwidth availability and number of
stations. The dlType sets a value used in the configuration files to determine the types of
downloads supported by the manager as was also mentioned earlier. The final value of the
configuration file terminate, is a switch used by the download manager between scans of
the station directory to determine if the manager should stop downloading files and
shutdown the manager software.

The download manager and its supporting scripts and configuration files are found in the
dataworks/ops directory (ops is short for operations, the activities at the center of the
Dataworks data download manager). The primary python script that starts the download
manager is dlManager_start. This script checks to ensure no active download managers are
running by querying the operating system for processes that may have been left running by
an unexpected system change. This check prevents a user from starting more than one
manager and prevents contention for system resources and potential data corruption. This
start up script is also responsible for clearing any [stationID].active files that may remain
from an abnormal exit, before it sets the downloadManager.conf files terminate variable to
false and starts the downloadManager.py script (the primary software component of the
download manager).

Users should refrain from running or stopping the downloadManager.py script directly to
maintain data coherence. Use of the dlManager_start and dlManager_stop scripts are
recommended to ensure all data downloads are completed, validated, and processed
correctly. Both start and stop scripts can be called with a –debug flag if the user desires
extra file logging to help with troubleshooting file downloading. Be warned that since the
download manager starts wget as a separate and independent process the wget logs are in a
separate location and also download manager reporting is not synchronized to a single

Dataworks for GNSS

41

process. As file downloads take an asynchronous amount of time, out of order log entries
can be generated unless you tune the manager to a single download process.

The best practice method to start the download manager is to run the command line:

./dlManager_start &

The use of the & makes this command starts the manager as a users background process
reporting its activities to the log file downloadManager.py.log in the dataworks/logs
directory. All log files for the downloader software are rotated once weekly with the last 5
logs stored in the logs directory.

The dlManager_stop script will take care of stopping the manager and its wget processes
once an individual file download is completed. This means that if wget is in the middle of a
long file download process the download manager may continue to run for some time until
that download completes. If the download manager enters a rest cycle it will not complete a
shutdown process until the rest cycle completes. Additionally once the stop script is ran the
download manager will not start any further station downloads while giving the current file
downloads a chance to complete. The point is to ensure users resist the temptation to kill
the download process until they ascertain it is absolutely necessary, as this leads to an
inconsistent shutdown state for the download manager.

When in doubt a user should examine the log files carefully to determine if the download
manager has stopped responding to input. If you have run the stop script but see no
indication that the manager has stopped queuing further downloads and you don’t see a log
entry to diary that the manager has received a terminate signal, then you can feel confident
that the download manager has stopped responding.

If the system is ever shut down unexpectedly or a case arises where you must kill the
download processes; it’s considered a best practice once you have made certain to
terminate all downloadManager.py processes to run the dlManager_stop script once to
completion before using the dlManager_start script to restart the download manager
package.

The Download Exporter

The function of the download exporter software included as part of the Dataworks package
is to provide processing to extract information from station downloads and prepare them
for insertion into the data ingest for archive purposes. The download exporter software
components are located in the dataworks home directory. As with the manager this file
package can be accessed either directly on the computer platform itself or via a remotely
hosted connection such as an X windows enabled terminal (xterm) using the ssh application
or appropriate X hosting software for graphical interfaces. The software comprising the
primary components of the Dataworks system will then be found in the dataworks/ops
directory. As with the manager, there you will find the start and stop scripts and the
configuration files to change the variable behaviors of the software.

Dataworks for GNSS

42

All the configuration files are JSON formatted and can be edited with a text based file editor
to tune the system to meet the users requirements. The configuration for the download
exporter contains the following information:

{"xpPause": 60, "maxProcess": 10, "terminate": false, "aliveReport":

20, "ftpRoot": "/data/", "ftpPrefix": "ftp://dataworks1/"}

The xpPause variable defines how long the export process will wait idle before checking to
see if there is any new data available for export. The download exporter scans the
dataworks/stations/[stationID]/data directory for files with a .CRX or .RNX extension. Files
with this designation are validated files from the download manager ready for export to the
database. When it finds the appropriate type of files the export manager places a
[stationID].expLock file in the dataworks/stations/[stationID]/ directory to indicate that it
is processing the downloaded files so it can block other processes from moving that data
while it is being exported.

It is possible to use the exporter services to support other datasets within the Dataworks
structure. If a user choses to manually download file sets from other receivers and use their
own set of processes to convert the data over to either RINEX 2.11 or Compact RINEX 2.11
formats the user can process this data as the would an automatically downloaded station.
All they would have to do is use the changeStation.py script to generate a station with a
suitable configuration file, then copy the data into the data directory for the station with the
appropriate file name and extension. The downloadExporter would then treat that data as
though it had been retrieved by the downloadManager and export the data set to the ftp
server while creating a diary entry for adding the new files to the Dataworks database.

The maxProcess value defines the maximum number of processes the user would like to
utilize for allowing the download exporter to read, validate and mine the download data.
This variable will also determine the number of database connections used to access data
values in the database. The aliveReport and terminate variables are used in a similar
manner to the value explained for the download manager. Terminate signals the export
process to finish its file processing, clear it’s locks and gracefully exit processing. If the
value is true then the downloadExporter.py script should in most instances end its
processing on the sever in the time specified by xpPause. The aliveReport value in
conjunction with the xpPause determine how often the process makes a log entry while it is
waiting to process more data.

The values for ftpRoot and ftpPrefix let the user customize where they want the ftp services
on the Datworks server to store data. The ftpPrefix is used to register the server’s
hostname as it will be accessed through the network configuration in relation to the server.
Since it is possible to use multiple configurations of ftp on a host with different name
service registrations the user is responsible to set this file to the appropriate configuration.

The ftpRoot location sets the destination for archiving the downloaded files in the archiving
directory structure. As users can add, expand or change disks they can direct the export
manager to store the files in the appropriate location as it relates to the local storage tree
configuration by changing this variable. The current configuration of the Dataworks server
is to use the /data/pub directory of the local disk space to store files in a predefined file
structure below that storage area. System changes using a path structure not meeting this

Dataworks for GNSS

43

standard configuration may require internal code changes in the downloadExporter.py
script and can impact the transfer, registration and availability of products to the
Dataworks services.

With the configuration file and directories for the server set, the download exporter is
capable of using these values to automatically process the station specific RINEX files. Once
it builds a process list and sets the appropriate lock files, the manager starts sub processes
to scan the files in the station directory to begin mining them for meta-data.

One of the first steps to the data mining is to determine if the [stationID] variable assigned
to the data files is registered in the database. To achieve this goal the export process must
connect to the MySQL database using database scripting and a correct configuration file. As
this file is a common configuration file to both the exporter and ingester functions it is kept
in the library area of the Dataworks services vice the ops directory.

Users may access and make appropriate configuration changes by modifying the file
dbaccessor.conf in the dataworks/lib/conf/ directory, the same directory that houses the
unique configuration files for the receiver setups. Like all the configuration files this one is
formatted as a JSON file, and is a standard text file, which can be edited with any favorite
application.

The following is an example of a default configuration for MySQL access:

{ "user": "dataworks1", "password": "1dwdbdwdb1", "host": "127.0.0.1",

"database": "DATAWORKS_TEST"}

The values set for user, password, host, and database reflect the settings used for logging
into the MySQL service which is the key support service to the database in the software
suite and should be provide as part of the users default settings once the server is delivered.
When security considerations require users to change passwords this file will need to be
modified to reflect changes to the users password.

Without proper database access, or when stations are downloaded without having a
properly registered four character id in the database, the export manager will give up
processing those files since there is no way to correctly register them in the database
without key information retrieved from the database schema. The process to modify a text
file and use a python script to properly add a new station to the database was covered in the
first section of this chapter. Any data sets that are not successfully validated against the
database are moved into a storage area as a stop hold point until the database configuration
is corrected to accept their processing.

These stop hold files can be found in the dataworks/.hold directory (note the ‘.’ in front of
the hold which in terms of the operating system designates this as a hidden directory unless
the user explicitly tries to list all directories). It is a good practice to scan this directory
once in a while to determine if there are a build up of files indicating that something in your
station or database configuration has changed and needs to be investigated further.

The export manager will contact that database to validate station existence and look up
information about the stations id number and equipment configuration id number. Once it

Dataworks for GNSS

44

is established that the station is properly registered for archive storage, the meta-data
extracted from the file is used to register the GNSS data into the local database. The mining
process scans the downloaded RINEX file, specifically it reads the file to determine the start
and stop time of the file and the epoch intervals. Additionally it builds an MD5 digest to
identify the file a unique set of data, and determines the file size. After the exporter has
successfully mined the appropriate information about the file, it creates a registration diary
file. The content of this file is a MySQL query intended to add the data file to the database
via a separate registration (ingest) process.

However, once created the diary will not be used to directly register the GNSS data files into
the database. The export manager stores this query diary as a text file in the log directory in
the location dataworks/logs/diaries/add/[YYYY]/[DDD]/

The file is saved with a specific GNSS data file format with a file name composed of the four
char id, numerical day of the year, series number, a .[YY]o or .[YY]d.Z extension depending
on the type of file downloaded from the receiver and finally a .sql extension.

The reason for creating this diary process is two fold. If the data processing for the export
manager is interrupted then using a diary minimizes the chances of corrupting the
database. Again as mentioned a separate process is used to read these diaries and do the
registration in the database so as to keep the access times and database utilization to a
minimum. The second reason is if something does happen to the database to corrupt its
contents the diary files can be reprocessed simply by copying them from an archive back
into the dataworks/logs/diaries/add/ structure. This keeps the user from having to
reprocess all the GNSS data files to mine the necessary elements from a RINEX file to
register it in the database (ie you won’t have to process terabytes of data to rebuild a
database).

Once the diary process has been completed the download exporter will use a safe move
procedure to transfer the file from the station directory to the ftpRoot directory. To
describe the safe move procedure it is composed of a two-step process. The file is first
copied from the station directory to the ftpRoot directory where it is stored in the same
format as described for a diary entry except it won’t have the .sql extension. Next when the
copy is completed the original downloaded file is removed from the station data directory.
Once all .RNX files are processed out of the directory the .expLock file is removed to signal
the download exporter process that it may scan for new files the next time it runs.

This method of diary and transfer is utilized as a best practice to reasonably ensure that the
GNSS data file is available in the ftp server area before the data is exposed and made
available via the html interface, so a user accessing the web interface to retrieve data is able
to complete a successful ftp download.

As with the download manager the download exporter is started and stopped by python
scripts called dlExporter_start and dlExporter_stop. These scripts manage the necessary
error checking and cleanup functions to keep the export manager running effectively and
efficiently.

Again it is best practice to have users refrain from running or stopping the
downloadExporter.py script directly to maintain data coherence. Use of the start and stop

Dataworks for GNSS

45

scripts are highly recommended to ensure all diaries and transfers are completed, validated,
and processed correctly. Both start and stop scripts can be called with a –debug flag if the
user desires extra file logging to help with troubleshooting the export process. Also note as
with the case of the download manager, that since the export manager starts separate and
independent processes diary creation and file transfer take an asynchronous amount of
time, and out of order log entries can be generated unless you tune the manager to a single
download process.

The best practice method to start the download manager is to run the command line:

./dlExporter_start &

This command starts the manager as a users background process reporting its activities to
the log file downloadExporter.py.log in the dataworks/logs directory. As mentioned before
the log files for the software are rotated once weekly with the last 5 logs stored in the logs
directory.

As before dlExporter_stop script will take care of stopping the manager and its sub
processes. The mining, diary and transfer processes all go quickly but the user may still
have to wait one full rest cycle before the stop script responds. The point is to ensure users
resist the temptation to kill the export process until they ascertain it is absolutely necessary,
as this leads to an inconsistent shutdown state for the download exporter.

As always when in doubt a user should examine the log files carefully to determine if the
export manager has stopped responding to input. If you have run the stop script but see no
indication that the manager has stopped queuing further processes and you don’t see a log
entry to diary that the exporter has received a terminate signal, then you can feel confident
that the download exporter has stopped responding.

If the system is ever shut down unexpectedly or a case arises where you must kill the export
processes; it’s considered a best practice once you have made certain to terminate all
downloadExporter.py processes to run the dlExporter_stop script once to completion
before using the dlExporter_start script to restart the export manager package.

The Download Ingester

The function of the download ingester software included with the Dataworks package
provides processing to add diary entries created by the exporter into the database for
utilization by the web services. The download ingester software components are also
located in the dataworks home directory. As with the manager and ingester, this file
package is accessed in the same directory and utilizes similar start, stop and configuration
files.

Worth mentioning again, all the configuration files are JSON formatted and can be edited
with a text based file editor to tune the system to meet the users requirements. The
configuration for the download ingester contains the following information:

{"maxProcess": 10, "terminate": false, "aliveReport": 20, "ingPause": 60}

Dataworks for GNSS

46

The ingPause variable defines how long the ingest process will wait idle before checking to
see if there are any new diaries for export and the aliveReport value controls how often the
script reports its running status in the log file.

The download ingester scans the dataworks/logs/diaries/add/ directory tree for files with
an .sql extension. Because it is scanning a tree, it builds a path list of multiple diary files
sorted by year, day and station collecting all data diaries created by the exporter since the
last time the export and ingest processes ran. Existing diary files are validated as having
complete RINEX files from the download manager waiting in the ftp area, ready for export
to the database. When the ingester finds diary files the software places an ingest.lock file in
the add/ directory to indicate that it is processing available diaries and blocking other
processes from moving that data while it’s being ingested.

The maxProcess value defines the maximum number of processes the user would like to
utilize for allowing the download ingester to communicate with the database. The
terminate variable is used in a similar manner to the value explained for the download
manager. It signals the ingest process to finish its file processing, clear its locks, clean up
empty directories and gracefully exit processing. If the value is true then the
downloadExporter.py script should end its processing on the server in the time specified by
ingPause.

With the configuration file for the server set, the download ingester is capable of using these
values to automatically process the diaries. Once it builds a process list and sets the
appropriate lock files, the manager starts sub processes to scan the diary files in the station
to prepare the sql statements for database insertion.

The processes use the database configuration file in the same manner as the exporter to
connect to the MySQL database. Using key information from the diary file the ingester
checks the db to ensure that it isn’t going to duplicate data should the user be trying to
reprocess old diary files. Once a db search verifies there is no duplication the sql statement
is ran to register the GNSS data file in the Dataworks database.

When the db confirms the registration, the ingester will then move the diary file by the safe
copy method described in detail earlier, placing it into a
dataworks/logs/diaries/saved/[YYYY]/[DDD]/ directory. Users should be aware that the
file tree will continue to expand in this directory as the download manager continues to
collect files. It is recommended that users of the Dataworks suite develop their own
methods for data management for this directory. See the appropriate section in the
previous part of this users guide for more information on this topic of data archiving.

As with the other processes the download ingester is started and stopped by python scripts
called dlIngester_start and dlIngester_stop, which manage the necessary error checking and
cleanup functions to keep the export manager running effectively and efficiently. Again it is
also best practice that users refrain from running or stopping the downloadIngester.py
script directly to maintain data coherence. Use of the start and stop scripts are always
recommended to ensure all diary registrations are completed correctly using the MySQL db
utilities to help with error checking and correction. As with the other processes both start
and stop scripts can be called with a –debug flag if the user desires extra file logging to help
with troubleshooting the export process.

Dataworks for GNSS

47

This software also uses independent processes for diary registration, which take an
asynchronous amount of time, and out of order log entries can be generated unless you tune
the manager to a single download process.

The best practice method to start the download manager is to run the command line:

./dlIngester_start &

As usual this command starts the manager as a users background process reporting its
activities to the log file downloadIngester.py.log in the dataworks/logs directory which will
be rotated weekly with the last five logs saved for reference.

As before dlIngester_stop will take care of stopping the manager and its sub processes. The
registration processes all go quickly depending on db loading but the user may still have to
wait one full rest cycle before the stop script responds. Always ensure users resist the
temptation to kill the ingest process until they ascertain it is absolutely necessary, as this
leads to an inconsistent shutdown state for the download manager.

To reiterate one last time, when in doubt a user should examine the log files carefully to
determine if the download manager has stopped responding to input. If you have run the
stop script but see no indication that the manager has stopped queuing further processes
and you don’t see a log entry to diary that the exporter has received a terminate signal, then
you can feel confident that the download exporter has stopped responding.

If the system is ever shut down unexpectedly or a case arises where you must kill the ingest
processes; it’s considered a best practice once you have made certain to terminate all
downloadIngester.py processes to run the dlIngester_stop script once to completion before
using the dlIngester_start script to restart the ingest manager package.

Further technical support requests for issues not described in this users manual can be
emailed to UNAVCO at the email address dataworks@unavco.org

Dataworks for GNSS

48

6 Metrics: Counting Data File Downloads and GSAC Requests in Dataworks
for GNSS

6.1 Counting GNSS Data File Downloads by Remote Users

Dataworks for GNSS works with Webalizer to measure and report FTP downloads of GPS
data files by remote users from its server.

Webalizer results are shown in public web pages. To see the summary of ftp traffic, view
the Webalizer URL at a server, like http://dataworks.mycenter.org/usage/index.html. Each
Dataworks for GNSS agency will have its own distinct domain, replacing that
"dataworks.mycenter.org." The Webalizer web pages at a Dataworks for GNSS agency will
have the same domain as the GSAC domain at that agency. Here is a sample Webalizer
summary table (not an actual Dataworks for GNSS site):

Also, there is also a separate page for each month of operation (click on a month name in

Dataworks for GNSS

49

the summary table). Each month page has several tables with much information.

For measuring GPS data file download activity, only a few values are useful: Files, KBytes,
and Sites. Files or Total Files (a number) shows how many files were downloaded with the
FTP server by month, day, or hour. KBytes, kB, or Total KBytes is the total size in KB of all
files downloaded in a month, day, or hour. Sites are counts of IP addresses requesting
downloads. One or more users may come from one site. The top 30 sites (IPs) making the
largest number of FTP requests is listed in a table on each month page. Those IPs are listed;
you can use software tools to resolve most IPs to their owner or agency. A total count of
sites by country is shown at the bottom of the page, but not all IPs give a country. Much of
the information on a Webalizer month page is not particularly useful to measure GPS file
FTP download activity, such as Pages. To make a useful report about GPS file download
activity you will need to find relevant information in each month page, or in the overall
summary page, and make your own report.

Webalizer is configured by editing /etc/webalizer.conf and updated by a crontab job,
controlled by the file /etc/cron.daily/00webalizer. Webalizer reads the FTP log file
/var/log/xferlog, and Webalizer updates files in /var/www/usage/. Everything shown
in Webalizer results is derived from values in the FTP log, /var/log/xferlog.

There is a description of Webalizer on your system. On a command line enter "man
webalizer" to see it. See also the Webalizer web site, http://www. webalizer.org/. The
description of Webalizer at http://en.wikipedia.org/wiki/Webalizer is good.

6.2 Counting Requests for Information from GSAC by Remote Users

To measure and report the number and type of GSAC requests for information received by
your Dataworks for GNSS data repository GSAC service, use the Python script
Dataworks_GSAC_use_metrics.py. In account ops, use the command:

/dataworks/metrics/Dataworks_GSAC_use_metrics.py

This reads the Apache Tomcat log file /var/log/tomcat6/catalina.out on your system.

The results are listed on the screen. You can redirect the results to a file by the command

 /dataworks/metrics/Dataworks_GSAC_use_metrics.py > GSAC_usage_report

The results look like this:

 GSAC Use at tlalocnet1, from 2014-11-02 to 2014 Nov 24 18:31:45 UTC

 Total count of GSAC requests = 10618 (includes page visits as

well as actual GSAC search requests.)

 Count of site searches = 10353 (has site/search in GSAC

API request)

 Count of site form searches = 218 (has site/form in GSAC API

request)

 Count of file searches = 14 (has file/search in GSAC

API request)

 Count of file form searches = 33 (has file/form in GSAC API

request)

Dataworks for GNSS

50

 Output types requested:

 site.csv 8092

 siteops.xml 1647

 site.xmllog 528

 site.html 28

 site.gsacxml 20

 gsacxml 17

 file.download (Webstart) 6

 site.snx 5

 file.html 5

 sitefull.csv 4

 site.kmz 2

 station.info 2

 file.url 1

 file.gsacxml 1

 file.wget 1

 60 distinct sites (IPs) made GSAC requests.

 The IPs making requests were:

 IP request count host name

 69.44.86.173 7647 moray.unavco.org

 69.44.86.88 1636 brick.unavco.org

 10.234.1.145 612 unagi.int.unavco.org

 218.29.102.114 36 hn.kd.ny.adsl

 202.56.13.99 23 (no host name found)

 132.239.153.107 19 moenkopi.ucsd.edu

 ... [more]...

(this is not a real Dataworks for GNSS GSAC use report.)

The 'Output types' beginning with 'file.' pertain to different ways to get information about
GNSS data files which can be downloaded. The users making these requests may not have
downloaded any files. None of the values in this report of GSAC use indicate any count of FTP
data file downloads. GSAC provides answers to requests for metadata about GPS data files,
but not any GPS data files themselves. FTP file download counts are shown in the Webalizer
results (section 6.1).

Dataworks for GNSS

51

7 Recommendations for Backup and Recovery

The critical information to backup is the FTP data directories and the MySQL database.
Keep in mind, if your organization is a using the GSAC mirroring function, all the site
metadata and data will be available at the originating GSAC for rebuilding the mirror.

If your organization is handling local site metadata and data with Dataworks, your data and
metadata must be backed up if you wish to recover from a server or storage failure. You
should at minimum backup the data and metadata directories-

The FTP data directory is /data.

The MySQL data directory is /var/lib/mysql

UNAVCO also recommends you backup any changes to GSAC code, database schemas,
python code and support scripts.

If your organization already has experience and procedures for backing up file systems and
MySQL databases, we recommend you follow those procedures.

If your organization has an operational data center or server facility, and you want
additional recommendations for securing a back up of the FTP data directories and MySQL
database, we recommend you use a network based backup utility, e.g.,
http://www.emc.com/data-‐protection/ networker.htm, and backup the critical file
systems for the FTP data and MySQL data directories.

If your organization does not have a server facility and not much experience with network
based backup and recovery, you will need to setup a couple of scripts to dump the MySQL
database and rsync the output and the FTP data directories to another server. An example
mysqldump command (see http://dev.mysql.com/doc/refman/5.1/en/mysqldump.html)
looks like the following:

$> mysqldump -h localhost -u dataworks -p --add-drop-database

--add-droptable --single-transaction --add-locks --triggers

name_of_database

./name_of_database_dump_file-date.sql

More examples of mysql use are in Appendix A.

An example rsync command (http://www.comentum.com/rsync.html) looks like the
following:

$> rsync –arv /data user@192.168.0.10:/backups

Dataworks for GNSS

52

8 The Dataworks for GNSS Email Group and Finding Help

8.1 Dataworks for GNSS Email Forum

Join UNAVCO's Dataworks for GNSS email forum or mailing list, to receive news about
dataworks and to write to UNAVCO about Dataworks for GNSS. You can receive and send
emails to this list to ask questions about Dataworks for GNSS, and to exchange ideas about
Dataworks for GNSS with other Dataworks for GNSS users on the list. You will be notified
of new software releases, bug reports, and so on.

To subscribe to the dataworks email forum, and for general information about the mailing
list, see http://postal.unavco.org/mailman/listinfo/dataworks.

To request help from UNAVCO about Dataworks for GNSS, email the Dataworks for GNSS
mailing list (see just above).

8.2 Web Resources for Dataworks for GNSS and GSAC

Dataworks for GNSS: http://www.unavco.org/software/data-
management/dataworks/dataworks.html

GSAC: http://www.unavco.org/software/data-management/gsac/gsac.html

Known GSAC servers http://www.unavco.org/software/data-
management/gsac/repositories/repositories.html

COCONet Project at UNAVCO: http://www.unavco.org/projects/major-
projects/coconet/coconet.html

TLALOCNet Dataworks GSAC site:
http://tlalocnet.udg.mx/tlalocnetgsac/

http://www.unavco.org/software/data-management/dataworks/dataworks.html
http://www.unavco.org/software/data-management/dataworks/dataworks.html
http://www.unavco.org/software/data-management/gsac/gsac.html
http://www.unavco.org/software/data-management/gsac/repositories/repositories.html
http://www.unavco.org/software/data-management/gsac/repositories/repositories.html
http://www.unavco.org/projects/major-projects/coconet/coconet.html
http://www.unavco.org/projects/major-projects/coconet/coconet.html
http://tlalocnet.udg.mx/tlalocnetgsac/

Dataworks for GNSS

53

Sponsor Acknowledgments

Dataworks for GNSS development was funded by NSF through the COCONet Cooperative
Agreement.

GSAC, then called GSAC-WS, was a NASA ROSES ACCESS Program funded project,
Cooperative Agreement NNX10AF07A (2010-2012).

In 2012 and 2013 NSF funded GSAC development at UNAVCO in support of COOPEUS.

Appendix A: Maintaining the Database and the Using MySQL Command
Line Client "mysql"

Maintaining the database for Dataworks is necessary to operate Dataworks and GSAC.
Maintaining your database for Dataworks is outside of UNAVCO operations, and is your
responsibility. Data archives require regular attention to large and small details if they are
to operate correctly. Operating a data archive with public search and access is far more
demanding than keeping files on a computer disk.

In routine Dataworks operations you may need to add information to the database, and
possibly correct errors. This section gives an overview of working with the database, and
some resources available for doing these tasks.

Dataworks uses a MySQL database, using a schema named "Dataworks." To maintain the
database you can use "mysql" the MySQL command line tool; see
http://dev.mysql.com/doc/refman/5.5/en/mysql.html. Or you can use MySQL Workbench,
a GUI to manage MySQL databases; see http://www.mysql.com/products/workbench/.

Some basics about working with a MySQL database are in the MySQL Tutorial at:

http://dev.mysql.com/doc/refman/5.5/en/tutorial.html,
and in many other web sites, such as:
http://oak.cs.ucla.edu/cs144/projects/mysql/
https://kb.ucla.edu/articles/mysql-resources
https://www.digitalocean.com/community/tutorials/a-basic-mysql-tutorial

In this appendix we assume you know about basic database concepts, such as tables, rows
(records), and fields (columns). Here are few examples about using mysql to see what is in a
database, to enter new field values, and to change field values.
MySQL databases have accounts with names and passwords to get into mysql. Accounts
have different levels of privileges or 'permissions' in MySQL, which can limit what you can
do. Some accounts are only to read from the database (GSAC uses a read-only mysql
account); others can add new data; others may create new accounts and change
permissions as well as read and write.
You need to have an account to use mysql.
To start the mysql command line tool:

http://dev.mysql.com/doc/refman/5.5/en/tutorial.html
http://oak.cs.ucla.edu/cs144/projects/mysql/
https://kb.ucla.edu/articles/mysql-resources
https://www.digitalocean.com/community/tutorials/a-basic-mysql-tutorial

Dataworks for GNSS

54

> mysql -h localhost -u dbacct1 -p

Enter password:
The mysql prompt is "mysql> ". Every mysql command ends with ";".
To exit mysql, type quit; :
mysql> quit ;

Bye

In a "mysql> " session on your terminal, to list the available databases:
 mysql> show databases;

 +--------------------------+

 | Database |

 +--------------------------+

 | information_schema |

 | Dataworks |

 | ...

Some of the databases listed are used only by mysql itself.
You next choose one database name to work with, in most cases the database named
"Dataworks":

mysql> use Dataworks;
To list the tables in that database:

mysql> show tables;
+---------------------+
| Tables_in_Dataworks |
+---------------------+
| access |
| agency |
| antenna |
| country |
| datafile |
| datafile_type |
| ellipsoid |
| equip_config |
| locale |
| metpack |
| monument_style |
| network |
| radome |
| receiver_firmware |
| station |
| station_status |
| station_style |
+---------------------+

To see the "description" (some of the schema) for one table, 'station':

Dataworks for GNSS

55

mysql> desc station:
+--------------------------+-----------------+------+-----+---------|----------------|
| Field | Type | Null | Key | Default | Extra |
+--------------------------+-----------------+------+-----+---------|----------------|
station_id	int(6) unsigned	NO	PRI	NULL	auto_increment
four_char_name	char(4)	NO		NULL	
station_name	varchar(50)	NO		NULL	
latitude_north	double	NO		NULL	
longitude_east	double	NO		NULL	
height_above_ellipsoid	float	NO		NULL	
installed_date	datetime	NO		NULL	
retired_date	datetime	YES		NULL	
style_id	int(3) unsigned	NO	MUL	NULL	
status_id	int(3) unsigned	NO	MUL	NULL	
access_id	int(3) unsigned	NO	MUL	NULL	
monument_style_id	int(3) unsigned	NO	MUL	NULL	
country_id	int(3) unsigned	NO	MUL	NULL	
locale_id	int(3) unsigned	NO	MUL	NULL	
ellipsoid_id	int(1) unsigned	NO	MUL	NULL	
iers_domes	char(9)	YES		NULL	
operator_agency_id	int(3) unsigned	YES	MUL	NULL	
data_publisher_agency_id	int(3) unsigned	YES	MUL	NULL	
network_id	int(5) unsigned	NO	MUL	NULL	
station_image_URL	varchar(100)	YES		NULL	
time_series_URL	varchar(100)	YES		NULL	
+--------------------------+-----------------+------+-----+---------+----------------+

Note each line above shows the allowed data type for each field. You cannot put a text
string (like 99.234 W") in "latitude," or more than 50 characters in "station_name."

To see all the values in 3 rows in the station table:

mysql> select * from station limit 3;

+------------+----------------+------------------+----------------+----

| station_id | four_char_name | station_name | latitude_north |

longitude_east | height_above_ellipsoid | installed_date |

retired_date | style_id | status_id | access_id | monument_style_id |

country_id | locale_id | ellipsoid_id | iers_domes | operator_agency_id

| data_publisher_agency_id | network_id | station_image_URL

| time_series_URL |

+------------+----------------+------------------+----------------+----

-----------+

| 1 | POAL | POAL_TNET_MX2013 | 19.1187 |

-98.6552 | 3992 | 2014-08-15 14:30:30 | NULL

| 1 | 1 | 2 | 1 | 1 |

1 | 1 | | 2 |

2 | 1 | http://www.unavco.org/data/gps-

gnss/lib/images/station_images/POAL.jpg | NULL |

Dataworks for GNSS

56

| 2 | TNAM | TNAM_TNET_MX2014 | 20.5357 |

-103.9668 | 1226.78 | 2014-09-04 00:00:00 | NULL

| 1 | 1 | 2 | 2 | 1 |

2 | 1 | | 1 |

1 | 1 | http://www.unavco.org/data/gps-

gnss/lib/images/station_images/TNAM.jpg | NULL |

| 3 | TNCM | TNCM_TNET_MX2014 | 19.4982 |

-105.0448 | 86.01 | 2014-09-08 17:00:15 | NULL

| 1 | 1 | 2 | 2 | 1 |

3 | 1 | | 1 |

1 | 1 | http://www.unavco.org/data/gps-

gnss/lib/images/station_images/TNCM.jpg | NULL |

+------------+----------------+------------------+----------------+----

3 rows in set (0.00 sec)

To see specific values from all the rows in a table:

mysql> select station_id, four_char_name,station_name,

latitude_north,longitude_east from station;

+------------+----------------+--------------------------+-------------

---+----------------+

| station_id | four_char_name | station_name |

latitude_north | longitude_east |

+------------+----------------+--------------------------+-------------

---+----------------+

| 1 | POAL | POAL_TNET_MX2013 |

19.1187 | -98.6552 |

| 2 | TNAM | TNAM_TNET_MX2014 |

20.5357 | -103.9668 |

| 3 | TNCM | TNCM_TNET_MX2014 |

19.4982 | -105.0448 |

| 4 | TNCU | CuauhtemocTN2014 |

28.4506 | -106.794 |

| 5 | TNHM | hermosilloTN2014 |

29.0813 | -110.9703 |

| 6 | TNMR | TNMR_TNET_MX2014 |

18.2885 | -103.3455 |

| 7 | TNMS | TNMS_TNET_MX2014 |

20.5347 | -104.7967 |

| 8 | USMX | Universidad de la Sierra |

29.8217 | -109.681 |

| 11 | TNNX | TNNX_TNET_MX2014 |

17.4076 | -97.2239 |

+------------+----------------+--------------------------+-------------

---+----------------+

9 rows in set (0.00 sec)

To see specific values from a specific row in a table, selected by a unique value in a row

Dataworks for GNSS

57

mysql> select station_id, four_char_name,station_name ,

latitude_north,longitude_east,installed_date,monument_style_id from

station where four_char_name="TNAM";

+------------+----------------+------------------+----------------+----------------+------------

---------+-------------------+
| station_id | four_char_name | station_name | latitude_north | longitude_east |

installed_date | monument_style_id |
+------------+----------------+------------------+----------------+----------------+------------

---------+-------------------+
| 2 | TNAM | TNAM_TNET_MX2014 | 20.5357 | -103.9668 | 2014-09-04

00:00:00 | 2 |
+------------+----------------+------------------+----------------+----------------+------------

---------+-------------------+
1 row in set (0.00 sec)

The equip_config table:

mysql> desc equip_config;

+-------------------------+-----------------+------+-----+---------+---

-------------+

| Field | Type | Null | Key | Default |

Extra |

+-------------------------+-----------------+------+-----+---------+---

-------------+

| equip_config_id | int(6) unsigned | NO | PRI | NULL |

auto_increment |

| station_id | int(6) unsigned | NO | MUL | NULL |

|

| create_time | datetime | NO | | NULL |

|

| equip_config_start_time | datetime | NO | | NULL |

|

| equip_config_stop_time | datetime | YES | | NULL |

|

| antenna_id | int(3) unsigned | NO | MUL | NULL |

|

| antenna_serial_number | varchar(20) | NO | | NULL |

|

| antenna_height | float | NO | | NULL |

|

| metpack_id | int(3) unsigned | YES | MUL | NULL |

|

| metpack_serial_number | varchar(20) | YES | | NULL |

|

| radome_id | int(3) unsigned | NO | MUL | NULL |

|

| radome_serial_number | varchar(20) | NO | | NULL |

|

| receiver_firmware_id | int(3) unsigned | NO | MUL | NULL |

|

| receiver_serial_number | varchar(20) | NO | | NULL |

|

| satellite_system | varchar(20) | YES | | NULL |

Dataworks for GNSS

58

|

| sample_interval | float | YES | | NULL |

|

+-------------------------+-----------------+------+-----+---------+---

-------------+

16 rows in set (0.00 sec)

To show 4 rows:

mysql> select * from equip_config limit 4;

+-----------------+------------+---------------------+-----------------

---------+

| equip_config_id | station_id | create_time |

equip_config_start_time | equip_config_stop_time | antenna_id |

antenna_serial_number | antenna_height | metpack_id |

metpack_serial_number | radome_id | radome_serial_number |

receiver_firmware_id | receiver_serial_number | satellite_system |

sample_interval |

+-----------------+------------+---------------------+-----------------

---+

| 24 | 8 | 2014-11-15 00:17:41 | 2014-07-15

14:22:45 | 2014-12-03 23:59:45 | 2 | 5343354887

| 0.0083 | 2 | J0540019 | 2 |

| 1 | 5341K46185 | GPS |

15 |

| 35 | 2 | 2014-11-15 00:17:41 | 2014-09-04

00:00:00 | 2014-11-24 23:59:45 | 2 | 5343354885

| 0.0083 | 2 | K2630028 | 2 |

| 1 | 5250K40670 | GPS |

15 |

| 36 | 1 | 2014-11-15 00:17:41 | 2014-08-15

14:30:30 | 2014-12-03 23:59:45 | 1 | 5000112724

| 0.5 | 2 | N/A | 1 |

| 1 | 5137K78333 | GPS |

15 |

| 37 | 3 | 2014-11-15 00:17:41 | 2014-09-08

17:00:15 | 2014-12-03 23:59:45 | 2 | 5330354725

| 0.0083 | 2 | K2630031 | 2 |

| 1 | 5250K40772 | GPS |

15 |

+-----------------+------------+---------------------+-----------------

--+

A lookup table example; the description:

mysql> desc antenna;
+--------------+-----------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------------+-----------------+------+-----+---------+----------------+

Dataworks for GNSS

59

antenna_id	int(3) unsigned	NO	PRI	NULL	auto_increment
antenna_name	varchar(15)	NO		NULL	
igs_defined	char(1)	NO		N	
+--------------+-----------------+------+-----+---------+----------------+

the rows:

mysql> select * from antenna;
+------------+--------------+-------------+
| antenna_id | antenna_name | igs_defined |
+------------+--------------+-------------+
1	TRM57971.00	Y
2	TRM59800.00	Y
3	ASH701945B_M	Y
4	TRM55971.00	Y
+------------+--------------+-------------+

To change a string value in a row in table equip_config:

update equip_config set radome_serial_number="SA001" where equip_config_id=30;

To change a numerical value in a row in that table:

update equip_config set antenna_height=0.00830 where equip_config_id=30;

To update a value in the station table for one station:

update station set operator_agency_id=12 where four_char_name="ST12";
where 12 is the id key number for the agency for station "ST12", selected from the agency
table.

To find the agency id numbers, see all the rows in the lookup table for agencies:
mysql> select * from agency;
+-----------+--+-------------------+
| agency_id | agency_name | agency_short_name |
+-----------+--+-------------------+
2	Institut Geographique National	
5	University of Puerto Rico, Mayaguez	
8	Suprema Corte De Justicia	
9	National Geodetic Survey	
...
+-----------+-------------+--+

Dataworks for GNSS

60

If a new agency is not yet in the database, add its name into the database agency table with
this command:
insert into agency (agency_name) value ("Institute Castradal");

A similar command may be used to insert a new row into any of the lookup tables.

To change a field in a table:
mysql> update agency set agency_short_name="NASA" where agency_id=11;

Query OK, 0 rows affected (0.00 sec)

Rows matched: 1 Changed: 0 Warnings: 0

To see how many gps files you have:

mysql> select count(*) from datafile;

+----------+

| count(*) |

+----------+

| 217532 |

+----------+

To see the database information about 5 gps files from some station whose station_id=12 :

mysql> select * from datafile where station_id=12 limit 5;

+-------------+------------+-----------------+----------------+--------

----------------+------------------+----------+

| datafile_id | station_id | equip_config_id | datafile_name |

original_datafile_name | datafile_type_id | sample_interval |

datafile_start_time | datafile_stop_time | year | day_of_year |

published_time | size_bytes | MD5 |

URL_path |

+-------------+------------+-----------------+----------------+--------

----------------+------------------+------------+

| 6750 | 12 | 71 | abvi0010.14d.Z |

abvi0010.14d.Z | 2 | 0 | 2014-01-

01 00:00:00 | 2014-01-01 23:59:45 | 2014 | 1 | 2014-01-02

00:00:00 | 580373 | 0406123a1273f13b420aa660cee2cc50 |

ftp://coconet1/rinex/obs/2014/001/abvi0010.14d.Z |

| 6751 | 12 | 71 | abvi0010.14n.Z |

abvi0010.14n.Z | 3 | 0 | 2014-01-

01 00:00:00 | 2014-01-01 23:59:45 | 2014 | 1 | 2014-01-02

00:00:00 | 31275 | 02a84b055fb00b61a3cfec5992e4d2b8 |

ftp://coconet1/rinex/nav/2014/001/abvi0010.14n.Z |

| 79139 | 12 | 71 | abvi3250.13d.Z |

abvi3250.13d.Z | 2 | 0 | 2013-11-

21 00:00:00 | 2013-11-21 23:59:45 | 2013 | 325 | 2013-11-22

00:00:00 | 572827 | 0a6966904f7f0a54734521aa89c56adf |

ftp://coconet1/rinex/obs/2013/325/abvi3250.13d.Z |

| 79140 | 12 | 71 | abvi3250.13n.Z |

abvi3250.13n.Z | 3 | 0 | 2013-11-

21 00:00:00 | 2013-11-21 23:59:45 | 2013 | 325 | 2013-11-22

00:00:00 | 30967 | 603683339b362c543c3f9dd82d071c63 |

ftp://coconet1/rinex/nav/2013/325/abvi3250.13n.Z |

Dataworks for GNSS

61

| 79141 | 12 | 71 | abvi3260.13d.Z |

abvi3260.13d.Z | 2 | 0 | 2013-11-

22 00:00:00 | 2013-11-22 23:59:45 | 2013 | 326 | 2013-11-23

00:00:00 | 576469 | d5d047818ebe6c80540bd46e315495ef |

ftp://coconet1/rinex/obs/2013/326/abvi3260.13d.Z |

+-------------+------------+-----------------+----------------+--------

----------------+------------------+

To select data file rows by time and at one station:

select * from datafile where station_id=12 and

datafile_start_time>"2013-11-28" and datafile_stop_time<"2013-11-30" ;

+-------------+------------+-----------------+----------------+--------

----------+

| datafile_id | station_id | equip_config_id | datafile_name |

original_datafile_name | datafile_type_id | sample_interval |

datafile_start_time | datafile_stop_time | year | day_of_year |

published_time | size_bytes | MD5 |

URL_path |

+-------------+------------+-----------------+----------------+--------

---------+

| 79155 | 12 | 71 | abvi3330.13d.Z |

abvi3330.13d.Z | 2 | 0 | 2013-11-

29 00:00:00 | 2013-11-29 23:59:45 | 2013 | 333 | 2013-11-30

00:00:00 | 571000 | fbca32cdb4d0051970473539c10d6bf4 |

ftp://coconet1/rinex/obs/2013/333/abvi3330.13d.Z |

| 79156 | 12 | 71 | abvi3330.13n.Z |

abvi3330.13n.Z | 3 | 0 | 2013-11-

29 00:00:00 | 2013-11-29 23:59:45 | 2013 | 333 | 2013-11-30

00:00:00 | 31018 | e84fcafb048ba6031ab0941c95908771 |

ftp://coconet1/rinex/nav/2013/333/abvi3330.13n.Z |

+-------------+------------+-----------------+----------------+--------

--+

To "update" (change) a field value in several rows based on another field value, in table
datafile:

update datafile set sample_interval=15.000 where datafile_stop_time

like '%23:59:45';

Query OK, 138891 rows affected, 1 warning (2.05 sec)

Dataworks for GNSS

62

Appendix B: Setup and Maintenance of the Downloader Software

First time setup.

Gather the following information:
1. Ops user password:
2. Database Name:
3. Database User name:

4. Database Password:
5. Host name of the system:
6. Public FTP server URL:
7. Root Data directory: (default) /data/
8. Dataworks base directory: (default) /dataworks/
9. Four character ID(s) for the station(s):
10. Station name(s):
11. Latitude, longitude and elevation of the station(s):

12. Mount type of the station(s):
13. Pick a date and time for putting the station into service:
14. Antenna type(s):
15. Antenna offset(s) in north, south, and elevation:
16. Antenna serial number(s)
17. The dome type(s):
18. Receiver model(s):

19. Receiver serial number(s):
20. Receiver firmware version(s)
21. Receiver Data sample interval(s):
22. Receiver Download intervals(s):
23. Receiver data directory path (s):
24. Receiver file name format(s):
25. Receiver file extension(s):

26. Network address of the receiver(s):
27. Organization name:
28. Organization location name:
29. Country:
30. Network name:
31. Metpack type (optional):
32. Metpack serial number (optional):

Items 1-5 are provided with the dataworks server as part of the initial setup.
Item 6 depends on your server hostname and configuration and is typically established to be
ftp://<hostname>/
Items 9,10,13,27-28 and 30 are user choices determined by your organization.
Items 11,12,14-17,29, and 31-32 are determined by the physical configuration of your station and
equipment.
Items 18-26 are determined by your receiver and network, section 7 figures 2a & 2b give
examples of how to locate this information.

Dataworks for GNSS

63

Start Here:

 Log into the server as the ops user: (see the Dataworks Administrator guide for

assistance).

 Change to the /dataworks/ directory [cmd] cd /dataworks/

Adding a new station to the database (after completing start here):

 Change to the db_aids/ directory [cmd] cd db_aids

 Using a text editor edit the template file station_data.csv [cmd] nano station_data.csv

 In the template file enter the information from above items 9-20, and 25-30 into the
comma separated file in the correct order. NOTE no commas (,) or apostrophes (') are

allowed in any field entry.

 Once you have finished creating your station file you can save it to another name (eg
TEST.csv) with the command [cmd] [control]O STATION_NAME.csv

 Exit the editor [cmd] [control]X

 Using a python script the data in the csv file is then registered into the database. In the

following command example dbname is from item 2 above. Dbacctname is from item 3,
dbacctpw is from item four. Section 7.1 gives a detailed example of using the script and
creating the csv file. [cmd] ./insertNewStation.py STATION_NAME.csv localhost
dbacctname dbacctpw dbname

 A message 'Inserted 1 new station without problems.' indicates a success. See section 7.1

for additional help if you received an error message.

Adding a new receiver configuration to the data downloader (after completing start here):

 Change to the lib/ directory [cmd] cd lib

 List the existing types of receivers [cmd] ls conf

 Use the python script to add a new receiver configuration [cmd] ./changeReceiverType.py

 Enter the answer to the prompts. Receiver model is item 18. Receiver Configuration sub
group should be different than any thing that showed up when you typed (ls conf). It is
unique to this single receiver session setup. Datapath is item 23, interval is item 22,

filename format is item 24, file extension is item 25, comments are user text to help
identify the configuration choices.

 Optional if set up for graphical interface (see section 7.2) you can use the optional
command [cmd] ./changeReceiverType.py -vis

 Optional if you have files in the conf/ directory you want to modify use the command

[cmd] ./changeReceiverType.py -update NetR9.1 [or cmd] ./changeReceiverType.py -
update NetR9.1 -vis

Dataworks for GNSS

64

Adding a new station configuration to the data downloader (after completing start here):

 Change to the lib/ directory [cmd] cd lib

 List the existing receiver types [cmd] ls conf

 List the existing stations [cmd] ls ../stations

 Use the python script to add a new receiver configuration [cmd] ./changeStation.py

 Enter the answer to the prompts. Station ID depends on your receiver setup (section 7
figures 2a & 2b). If the files begin with the station serial number use item 19, otherwise
you may use item 9 from above the four char id. Receiver model is item 18, receiver type
is selected from the list provided (ls conf). Connection type, select from the list provided.
Connection resource is item 26, Number of download days is how far back you want to

check for new files on the receiver, Importance is the priority of download, user and T
password are for receivers requiring authentication. The alias is only required if you used
a serial number (item 19) as your station id. If you did then enter item 9 in this block.
The last block is user comments.

 Optional if set up for graphical interface (see section 7.2) you can use the optional
command [cmd] ./changeStation.py -vis

 Optional if you have files in the conf/ directory you want to modify use the command
[cmd] ./changeStation.py -update IRID [or cmd] ./changeStation.py -update IRID -vis

Configuring your download manager for startup (after completing start here):

 Change to the ops/ directory [cmd] cd ops

 Edit the configuration file [cmd] nano downloadManager.conf

 The file has the following content : {“compact”: true, "dlPause": 60, "maxProcess": 5,
"terminate": false, “aliveReport”: 20, "dlType": ["IP", "URL"]} (section 7.2 on the
downloadManager describes the intent of the variables) For a less active manager

increase dlPause. To download more stations at once increase maxProcess. Default
values are meant as a functional start point.

 Exit the editor and save changes [cmd] [control]X

Configuring your download exporter for startup (after completing start here):

 Change to the ops/ directory [cmd] cd ops

 Edit the configuration file [cmd] nano downloadExporter.conf

 The file has the following content : {"xpPause": 60, "maxProcess": 10, "terminate":
false, “aliveReport”: 20, "ftpRoot": "/data/", "ftpPrefix": "ftp://myhost.eu/"} (section 7.2

on the downloadExporter describes the intent of the variables) For a less active exporter
increase xpPause. To process more data files at one time increase maxProcess. FtpRoot
is item 7, and ftpPrefix is item 6 from above. Default values are meant as a functional
start point with the exception of ftpPrefix which must be changed to correctly export data
to the dataworks database.

 Exit the editor and save changes [cmd] [control]X

Configuring your download ingester for startup (after completing start here):

 Change to the ops/ directory [cmd] cd ops

 Edit the configuration file [cmd] nano downloadIngester.conf

 The file has the following content : {"maxProcess": 10, "terminate": false, "ingPause":
60, “aliveReport”: 20} (section 7.2 on the downloadIngester describes the intent of the
variables) For a less active ingester increase ingPause. To increase the number of db
connections to register data faster increase maxProcess. Default values are meant as a
functional start point.

Dataworks for GNSS

65

 Exit the editor and save changes [cmd] [control]X

Dataworks for GNSS

66

 Configuring downloader components to access the database (after completing start here):

 Change to the lib/conf/ directory [cmd] cd lib/conf

 Edit the configuration file [cmd] nano dbaccessor.conf

 The file has the following content : {"user": "dataworks", "password": "passtodbaccess",

"host": "127.0.0.1", "database": "dataworks"} User is set from item 3 above. Password
is item 4, and database is set from item 2. Host points to the internal address of the local
machine and should not need to be changed.

 Exit the editor and save changes [cmd] [control]X

Dataworks for GNSS

67

 Configuring downloader components to access the database (after completing start here):

 Change to the lib/conf/ directory [cmd] cd lib/conf

 Edit the configuration file [cmd] nano dbaccessor.conf

 The file has the following content : {"user": "dataworks", "password": "passtodbaccess",

"host": "127.0.0.1", "database": "dataworks"} User is set from item 3 above. Password
is item 4, and database is set from item 2. Host points to the internal address of the local
machine and should not need to be changed.

 Exit the editor and save changes [cmd] [control]X

Starting the download manager (must have configurations completed)

 Change to the ops/ directory [cmd] cd /dataworks/ops/

 Use the manager start script to enable the service [cmd] ./dlManager_start &

 Check the log file for activity [cmd] tail -f ../logs/downloadManager.py.log

 Look for the presence of wget entries indicating downloads

 Exit the log file [cmd] [control] C

 See the troubleshooting section for common problems

Starting the download exporter (must have configurations completed)

 Change to the ops/ directory [cmd] cd /dataworks/ops/

 Use the exporter start script to enable the service [cmd] ./dlExporter_start &

 Check the log file for activity [cmd] tail -f ../logs/downloadExporter.py.log

 Look in the log file for the mention of diary creations.

 Exit the log file [cmd] [control] C

 See the troubleshooting section for common problems

Starting the download ingester (must have configurations completed)

 Change to the ops/ directory [cmd] cd /dataworks/ops/

 Use the ingester start script to enable the service [cmd] ./dlIngester_start &

 Check the log file for activity [cmd] tail -f ../logs/downloadIngester.py.log

 Look in the log file for successful registry of data files in the database

 Exit the log file [cmd] [control] C

 See the troubleshooting section for common problems

Shutting down the downloader components:

 Change to the ops/ directory [cmd] cd /dataworks/ops/

 Use the component stop scripts to disable the service [cmd] ./dlManager_stop [or cmd]
./dlExporter_stop [or cmd] ./dlIngester_stop

 Check the log files to confirm services have stopped (see previous sections)

 Individual components may be shut down without adversely effecting the other services.

You may wish to shut down the download ingester for database maintenance periods.

Steps to change equipment session:

 Making use of the previously created csv file to enter a new station into the dataworks
database, users can modify the content of the file and run the insert script a second time

to manage equipment session changes.

Dataworks for GNSS

68

Troubleshooting common downloader problems:

 downloadManager won't retrieve files:

 Use an internet connection to see if the station is reachable.

 See the steps on adding a new station. Use the -update option on the station to
verify the correct settings for network address.

 Change to the station data directory and look for the presence of a .wget.log file.
The contents of the file will help you determine if the attempt to download data
from the station is encountering problems.

 See the steps on adding a new receiver. Use the -update option on the station to
verify the correct settings for the receiver if the wget.log indicates problems with

file names or file paths.

 Check the /dataworks/.hold/ directory. When a station ID or an alias isn't found
in the database the download files are moved to the hold directory by the
exporter.

 Check the lib/conf/dbaccessor.conf file to ensure the downloader can access the

dataworks db to register the files for use in gsac.

 Restart the downloadManager by the start script.

 Contact the dataworks email group for further assistance.

 Can't retrieve files from the GSAC service:

 Check to see that the station ID is registered in the dataworks database by
searching GSAC for the four char ID used in the station configuration file.

 Check to see that the exporter and ingester files are running

 Check to see that the ftpPrefix is set correctly in the downloadExporter.conf file.
If you make changes then restart the exporter.

 Contact the dataworks email group for further assistance.

Dataworks for GNSS Software Manual

Copyright © 2016 UNAVCO.

Retransmission, reuse, or reproduction permitted only when this document is

complete and unaltered.

Short quotations permitted only with prior written permission from UNAVCO
and only when complete credit with source citation is clearly given.

