Measuring plate motion with GPS:

Introducing GPS to study tectonic plates

as they move, twist, and crumple

Roger Groom and Cate Fox-Lent, UNAVCO Master
Teachers-in-Residence, Nancy West and Shelley OIds,
So she s in : UNAVCO

UNAVCO.

You should be able to:

- Describe generally how GPS works;
- Interpret graphs in a GPS time series plot;
- Determine velocity vectors from GPS time series plots;
- Explain relative motions of tectonic plates in Iceland; and
- Explore global GPS data.

Geodesy is the science of ... measuring Earth's size, shape, orientation, gravitational field, and variations of these with time.

Anatomy of a GPS station

GPS antenna inside the dome is anchored to the ground with braces.

Solar panel for power.

Equipment enclosure includes:

- GPS receiver
- Power/batteries
- Communications
- Data storage

- Three satellite signals locate the receiver in 3D space.
- The fourth satellite is used for time accuracy.
- Position can be located to within less than a centimeter.

One satellite, the GPS could be anywhere the edge of the sphere.

Two satellites, GPS could be on the circle where spheres
intersect.
3 satellites:
spheres intersect in 2 places.

Instantaneous positioning with GPS

Consumer grade accuracy of

- +/- 10 m ($\mathbf{3 0} \mathrm{ft}$) error (horizontal)
+/-15 m (45 ft) error (ventica

- Current accuracies sub-cm.
- Use the carrier phase
- Dual-frequency receivers
- High-precision orbital information
- Good monuments
- Multiple stations
- Sophisticated processing software
- Collect lots of data

Movement of GPS stations

GPS station positions change as plates move.

Movement of GPS stations

GPS station positions change as plates move.

To build a gumdrop model of a GPS monument:

1. Use one gumdrop as the receiver (GPS monument).
2. Use toothpicks as three legs and one center post (monument braces).
3. Form feet from three small lumps of clay (concrete).
4. Place on a small piece of transparent paper ("see-through" crust).

Contact:
 education @ unavco.org http://www.unavco.org/

Follow UNAVCO on

Facebook Twitter

Data source: Global Strain Rate Map Project ; Reference Frame: No Net Rotation UNAVCO GPS Velocity Viewer:
http://facility.unavco.org/data/maps/GPSVelocityViewer/GPSVelocityViewer.html

Nearby PBO GPS Stations

http://www.unavco.org/instrumentation/ networks/status/pbo

North America reference frame

http://www.unavco.org/software/visualization/GPS-Velocity-Viewer/GPS-Velocity-Viewer.html

http://www.unavco.org/software/visualization/GPS-
Velocity-Viewer/GPS-Velocity-Viewer.html

GPS Velocity Viewer

Key GPS Symbols:

$25 \mathrm{~mm} /$ vear speed scale

Part 2: Measuring movement

SBCC GPS STATION

- Located near Mission Viejo, CA
- Position data collected every 30 seconds
- One position estimate developed for each day:
> North
> East
$>$ Vertical

Date	North (mm)	East (mm)	Vertical (mm)
$1 / 1 / 2004$	-37.67	36.57	2.33
$1 / 2 / 2004$	-38.04	35.73	5.63
$1 / 3 / 2004$	-37.16	35.83	4.69
$1 / 4 / 2004$	-37.34	36.34	5.36
$1 / 5 / 2004$	-37.59	36.44	9.11
\ldots	\ldots		
$1 / 1 / 2005$	-9.43	9.63	2.36
$1 / 1 / 2006$	16.48	-18.09	7.35
$1 / 1 / 2007$	45.98	-43.42	-6.43

SBCC (SBCC_SCGN_CS1999)

3 separate plots on y-axis:
$>$ North
$>$ East
$>$ Height
(Vertical)
Notice that scales vary.

X-axis: date of the measurement

Some GPS Error Sources

- Selective Availability
- Satellite orbits
- Satellite and receiver clock errors
- Atmospheric delays
$>$ lonosphere
$>$ Troposphere
- Multi-path
- Human errors

G.P. SATELBOTES GONE BAD

Which way are we going?

Is the GPS station moving
north or south?
east or west?

up or down?

Which way are we going?

Positive slope:
The station is moving north.

The station is moving east.

The station is moving up.

Is the GPS station moving
 north or south?

east or west?

up or down?

Negative slope:
The station is moving south.

The station is moving west.

The station is moving down.

If the GPS Time Series Plots look like:

time

time

time

If the GPS Time Series Plots look like:

time

time

UNAVCO

Gaps in data

P281 (CholameCrkCN2004)

Causes:

- Power outages
- Snow coverage
- Equipment failure
- Vandalism
- Wildlife
- Etc.

Units on time series plots

What are the units of measurement for this data?

GPS monument HOFN: north

How quickly is HOFN moving in the north - south direction?

Let's look at 1998 and 2008.
Average position on 1/1/2008 =
mm Average position on 1/1/1998 = \qquad mm

GPS monument HOFN: north

Average position on $1 / 1 / 2008=50 \mathrm{~mm}$ Average position on $1 / 1 / 1998=-98 \mathrm{~mm}$

Change in position $=50-(-98)=148 \mathrm{~mm}$
Annual speed of HOFN north = $148 \mathrm{~mm} / 10$ years
$=14.8 \mathrm{~mm} / \mathrm{yr}$ to the north for HOFN

GPS monument HOFN: east

How quickly is HOFN moving in the east - west direction?

Average position on 1/1/2008 = \qquad mm Average position on 1/1/1998 = \square mm

Speed of HOFN east =__mm/10 years
$=\ldots \quad / \mathrm{yr}$ to the (east or west)

GPS monument HOFN: east

How quickly is HOFN moving in the east - west direction?

Average position on $1 / 1 / 2008=50 \mathrm{~mm}$ Average position on $1 / 1 / 1998=-80 \mathrm{~mm}$

Speed of HOFN east $=130 \mathrm{~mm} / 10$ years
$=13 \mathrm{~mm} / \mathrm{yr}$ to the east for HOFN

What direction is Monument HOFN moving?
$\begin{array}{ll}\text { a) north only } & \text { b) northwest } \\ \text { c) northeast } & \text { d) southwest }\end{array}$

GPS monument REYK

Think, then discuss with your neighbor: What direction is monument REYK moving? About how fast?

How quickly is REYK moving in the north - south direction?

Average position on $1 / 1 / 2008=90 \mathrm{~mm}$
Average position on $1 / 1 / 1998=-115 \mathrm{~mm}$
Speed of REYK north $=(90--115) \mathrm{mm} / 10$ years
$=205 \mathrm{~mm} / 10 \mathrm{yr}$
$=20.5 \mathrm{~mm} / \mathrm{yr}$ to the north for REYK

GPS monument REYK

How quickly are they moving in the east - west direction?

Average position on $1 / 1 / 2008=-50 \mathrm{~mm}$
Average position on 1/1/1998 $=60 \mathrm{~mm}$
Speed of REYK (east) $=(-50-60) \mathrm{mm} / 10$ years
= $-110 \mathrm{~mm} / 10 \mathrm{yrs}$
$=110 \mathrm{~mm} / 10 \mathrm{yr}$ to the west
$=-11 \mathrm{~mm} / \mathrm{yr}$ to the west for REYK

UNAVCO
 Displaying velocities on a map

There must be an easier way to show this!

Are REYK and HOFN moving:

...towards each other, away from each other, or in the same direction?

Mimic these motions with your GPS models.

A vector shows speed and direction.

Anatomy of a Vector

The direction of the vector shows the direction the GPS station is moving

Tail

Each axis uses the same
scale.
Each axis uses the same
scale.
X-axis: east in millimeters Y-axis: north in millimeters

On your graph paper, each $\frac{\stackrel{5}{ㄹ}}{\text { 己 }}$ block represents 1 mm .

Where is the origin on this graph paper?

Graph paper as a map.

Graph paper as a map

Plotting REYK vectors

- Vector: magnitude and direction
$>$ Tail is the GPS monument location.
$>$ Length of arrow is the magnitude.
$>$ Shows direction on a map.

Step 1. Draw the first vector along the north axis with the tail at 0 .

- GPS monument REYK moves 20.5 mm to the north per year
- Draw a vector arrow 20.5
 blocks along the north axis.

Step 2. Place the tail of the east vector at the head of the north vector.

Draw the vector -11.0 blocks (mm) beginning at the head of the north arrow

Step 3. Draw the total vector from the tail of the north vector to the arrowhead of the east vector. This new vector is the sum of the north and east vectors.
252015

Or, use the Pythagorean theorem to add vectors.

GPS monument moves at: $\sqrt{ }\left(x^{2}+y^{2}\right)=$
\qquad $\mathrm{mm} / \mathrm{yr}$ to the

1. Graph the vectors for HOFN and REYK.
2. Answer questions in "Thinking through the data and maps."

UNAVCO.
 What is happening to Iceland?

Extra credit - How is REYK moving compared to HOFN? (pretend HOFN is not moving)

Extra credit - How is REYK moving compared to HOFN? (pretend HOFN is not moving)

Iceland

Mid-Atlantic
Ridge

East Africa Mystery - worldview

Mapping plate movement

UNAVCO GPS Velocity Viewer *
GPS velocity vectors show how the surface of the Earth is moving

GPS_vectors_after_rotation_NNR.dat Velocity vectors

GPS Velocity Viewer

GPS Velocity Viewer

Google

[^0]\qquad

Match cars and graphs

Match cars and graphs

Match cars and graphs

ii) North East What | Which car? |
| :--- |
| direction? |

South

v) What direction is Car D moving?

Draw the north and east graphs
North
East

North

E

D
v) What direction is Car D moving?

Southeast

Draw the north and east graphs
North
East

Time (Hours)

Time (Hours)

North E

D

Data source: Global Strain Rate Map Project ; Reference Frame: No Net Rotation UNAVCO GPS Velocity Viewer:
http://facility.unavco.org/data/maps/GPSVelocityViewer/GPSVelocityViewer.html

- Data for Educators
>http://www.unavco.org/edu_outreach/data/ data.html
- UNAVCO Velocity Viewer
>http://facility.unavco.org/data/maps/ GPSVelocityViewer/GPSVelocityViewer.html

You should now be able to:

- Describe how GPS works;
- Interpret graphs in a GPS time series plot;
- Determine velocity vectors from GPS time series plots;
- Explain relative plate motions in Iceland; and
- Explore global GPS data.

Contact:
 education @ unavco.org http://www.unavco.org/

Follow UNAVCO on

Facebook Twitter

Other tools to explore

- UNAVCO GPS, Earthquake, Volcano Viewer
>http://geon.unavco.org/unavco/GEV.php
- IRIS Earthquake Browser
$>$ http://www.iris.washington.edu/servlet/ eventserver/map.do

Comparing Plate Movement

Measuring the Grust and Mantle Move

Sources

Ice

- Ice-age melting
- Present-day melting

Water

- Ocean tides
- Wind-driven surges
- Reservoir depletion

Air

- Water Vapor
- Weather systems as noise and signal (information)

EARTH'S RECOVERY FROM THE ICE AGE

(1) 20,000+ years ago

Glacial ice sheets blanket vast regions of the Earth, causing the Earth's crust to sink from the weight of the ice.

Chicago Tribune

(2) 12,000 years ago

As glaciers melt, the land rebounds. Canadian land rises (above). Chicago sinks as the mantle under the city flows back into Canada.

Measuring the Land Rebound (or Sink)

Green line shows 0 mmyr vertical "hinge line" separating uplift from subsidence. (left) Vertical GPS site motions (right) Horizontal motion Red vectors represent sites primarily affected by GIA. Purple vectors represent sites that include effects of tectonics.

Horizontal GPS Motions

Fig. 5. Assessment of core station selection. Velocities of core stations (with yellow circles) are shown together with other frame stations, indicating the effects of plate boundary deformation in the west, and post-glacial rebound in the northeast. To compar.

GPS

Add load
GPS
\bigcirc

Displacements caused by adding anoad

GPS receiver moves
downward and
towards the load
Add load
GPS

Displacements caused by removinga load

GPS receiver moves upward and away from the load
remove load
GPS

UNAVCO
 Websites shown during demonstration

Learn more about how GPS works and the science learned through research
GPS Spotlight

- Spotight Map Understanding GPS Station Webcams $\mathrm{K}_{\mathrm{PBO}} \mathrm{H}_{2} \mathrm{O}$ Portal \pm Contact
(3) Spotlight Map

GPS Spotlight: http://xenon.colorado.edu/spotlight/index.php PBO H2O: http://xenon.colorado.edu/portal/index.php

UNAVCO.
 Websites shown during demonstration

See the ground and forests with LiDAR

Open Topography: http://www.opentopography.org/
New York: http://gis.ny.gov/elevation/lidar-coverage.htm
Maine: http://www.maine.gov/megis/projects/lidar.shtml
Vermont: http://vcgi.vermont.gov/warehouse/products/ALL-LDR MIX LIDAR STATE ALL New Hampshire: http://www.granit.unh.edu/resourcelibrary/specialtopics/lidar/

http://earthobservatory.nasa.gov/Features/GRACE/page3.php

Measuring the Plates Move

[^0]: Map data ©2014 Basarsoft, Google, Inav/GeosistempasSRL, MapIT, ORION-ME 500 km

