Earth Tides

Duncan Carr Agnew

IGPP/Scripps Institution
UC San Diego
Outline

• What are the Earth Tides?

• How do We Estimate/Remove Tides in a Series?

• How do we Model the Earth Tides?
Why Do We Care About Tides?

- We want to remove them to see other things.
- So we can use them as a calibration signal for the BSM’s.
 - To look at other signals, we want to analyze (and predict) the tides as well as we can.
 - Earth-tide studies (and calibrations) compare an analysis with model tides to understand the Earth.

Fortunately, accurate modeling of the tides is – mostly – not too difficult.
We can best look at
 • How the tides actually occur (their physics)
 • How we model them
by breaking the phenomenon into several pieces. We have excellent models for some pieces, pretty good ones for some, and none for some.
Time Domain vs Constituents

For calibrations we use sinusoids, since the largest constituents have the best signal-to-noise ratio. And, the sinusoidal representation has a long history, so you need to know it.
Tidal Constituents (I)

• All constituents are clustered around 0, 1, 2 cycles/day (different species).
• A few large constituents dominate.
• Names (Darwin/Kelvin): not arbitrary, but not obvious.
Tidal Constituents: Diurnal

- Within each species, constituents cluster into groups spaced 1 cycle/month apart,
- Within groups there is finer spacing of 1 cycle/year or less.
Tidal Constituents: Semidiurnal

Tidal Potential: Constituent Amplitudes

- Semidiurnal tides
 - $3N_2$, ξ_2
 - $2N_2$, λ_2
 - N_2, ν_2
 - γ_2, α_2
 - β_2, δ_2
 - M_2
 - L_2
 - S_2
 - T_2
 - K_2
 - $2T_2$
 - ξ_2
 - η_2

Log Amplitude

Frequency (cycles/day)

1.80 1.85 1.90 1.95 2.00 2.05
The body tide plus the load tide is the \textit{tidal signal} in reality, and the \textit{theoretical tide} in modeling.
How do We Estimate/Remove Tides in a Series?
Why Do We Estimate Tides

We want to extract tidal parameters from a time series so that:

- We can compare them with the theoretical tides, for calibration or geophysics.
- We can predict them so that they can be removed.

Removal of tides predicted from data 25 years earlier. Residual energy around one cycle/day is from thermal effects. A local fit can remove this.
Issues in Tidal Analysis

Nearly all procedures fit sinusoids to the data.

Complications

• The frequency separation between many constituents is \(\ll \) than the inverse of the record length – we can’t just “fit all the constituents”.

• The larger tides vary slowly in amplitude over a nodal cycle (19 yr, up to 15% in amplitude) – we can’t just “fit the largest constituents”.

Simplifications

• The frequencies and amplitudes of the tidal forces are known to \(10^{-6} \) or better.

• For nearby frequencies, the relative amplitudes and phases of the observed tides are close to those of the tidal forces.
Smoothness of the Admittance

The **admittance** is the response of the system (ocean or earth) to forcing; this does not vary rapidly with frequency.

So, suppose that the force is

\[F = A_1 \cos(2\pi f_1 t + \phi_1) + A_2 \cos(2\pi f_2 t + \phi_2) \]

and the observed is

\[O = B_1 \cos(2\pi f_1 t + \theta_1) + B_2 \cos(2\pi f_2 t + \theta_2) \]

then, if \(|f_1 - f_2| \ll f_1\)

\[
\frac{B_1}{B_2} \approx \frac{A_1}{A_2}
\]

and

\[\theta_1 - \theta_2 \approx \phi_1 - \phi_2 \]

So if we have \(B_1\) and \(\theta_1\), we can infer \(B_2\) and \(\theta_2\).
Outline of Harmonic Analysis

- Bandpass the data to reduce noise at frequencies below and above the tides.
- Make a least-squares fit of sinusoide with the selected tidal frequencies:
 \[\sum_{n=1}^{N} a_n \cos(\omega_n t) + b_n \sin(\omega_n t) \]

- Include all the constituents in a frequency band, in proportion, for each “sinusoid”.
- The amplitude should be normalized to the mean value without nodal variations.
What Do We Get?

For “each tide”, considered as $A \cos(2\pi ft + \phi)$ we get

- An amplitude, A, in counts (or whatever).
- A phase, ϕ, in degrees or radians (or, ϕ/f, in time).

There are two sources of confusion about the phase:

- The sign. As written, if $\phi = 0$, the tide is largest at $t = 0$; for $\phi < 0$, largest for t positive: negative phase is a lag. This is not completely standard.
- What the phase is relative to.
 - **Local phase**: $\phi = 0$ when the tidal force for “that tide” is maximum at the location of the data.
 - **Greenwich phase**: $\phi = 0$ when the tidal force for “that tide” is maximum at the Greenwich meridian.
Using $A \cos(2\pi ft + \phi)$, with A and ϕ as parameters, decouples time shifts and scale factors. Or, write

$$A \cos \phi \cdot \cos(2\pi ft) - A \sin \phi \cdot \sin(2\pi ft) = P \cos(2\pi ft) + Q \sin(2\pi ft)$$

where P and Q are the **in-phase** and **quadrature** parts of the tide.

We can plot P and Q on a **phasor plot** (same as the Argand diagram for complex numbers).

We can express the sum of sinusoids on such a plot.

Errors in P and Q are uncorrelated, unrelated to size of sinusoid. Errors in A and ϕ are more complicated.
Tidal Prediction

Given the A_n's and Φ_n's, a crude prediction of the tides would be a sum of terms of the form $A_n \cos \left(\omega_n t - \Phi_n - \Phi_n^0(t_0) \right)$ where there is a reference time t_0.

To be more precise (including the nodal variations), use more constituents, with amplitudes and phases from interpolating the ratio of the amplitude of the potential to the data. The *hartid* program (in SPOTL) does this.
Tidal Analysis Packages

- **BAYTAP08**, which includes decomposition into drift, tides, short-period variations.
- **ETERNA**: least-squares package, designed especially for gravity tides (very high SNR).
- **T_Tide**: MATLAB routines, designed for ocean tides; there is a version that uses robust fitting methods.
Baytap08

Derived from BAYTAP-G; performs a least-squares fit for:

- The **tides**
- A smooth “**trend**” or “**drift**”
- Parts of the data that are **correlated** with other series.
- The program also adjusts the smoothness of the trend for “minimum Akaike Bayesian Information Criterion”.
- Tidal analysis is done by “groups” to avoid instability from fitting sinusoids with very similar frequencies – depends on data length.
Baytap Groups

![Baytap Tidal Groups Diagram](Diagram.png)
Running Baytap

Baytap08 takes as input:
 • The **data file**: various formats, simplest is a title line and 1 value/line
 • A **control file**: instructions to the program
 • Optional, **auxiliary files**: barometric pressure etc.

Baytap08 produces:
 • A **results file**: results of the analysis, especially tidal results and residual spectrum
 • A **series file**: the trend, tides, correlated part, and so on, for plotting.

Syntax:
```
cat data | baytap08 control results [aux[aux[aux]]] > output
```
How do We Model Tides?
Step 1: Body Tides

These can be modeled using

- The tidal forces
- Love numbers for a elastic and spherical Earth model

Because the Love numbers are for degree-2 spherical harmonics, they depend on whole-Earth structure, and so are known to 1% or better.
Step 2: Ocean Loading

Loading at a location from a load H somewhere else is

$$\rho g H G_L(\Delta, \phi)$$

where G_L is the Green function for an effect at the origin (our location) from water height H at distance Δ and azimuth ϕ. We integrate this over the Earth.
Green function
SPOTL (Some Programs for Ocean Tide Loading) finds this product and takes the integral of the product to find the loading effect at a specified location.
Green Functions

Boussinesq: Point load on an elastic halfspace. Simple, popular, and not very good – though the best that can be done analytically. Done properly (Farrell 1972) can include full elastic structure on a spherical Earth.
Load Computation with SPOTL

SPOTL includes

• A. Ocean-tide models giving H for
 • A variety of global models (low-resolution)
 • High-resolution models for selected areas, with boundaries in polygon files.

• B. A land-sea model, to describe more precisely where the ocean ends or begins.

• C. Green functions for different Earth models.
Ocean Tide Models
Polygon for Separating Different Models
Load Grid for Global Model
Load Grid for Local Model
The programs are:

1. nloadf for finding the load, at one location, for a particular constituent.
2. loadcomb for combining loads from different models, adding the body tide, and adjusting for different azimuths.
3. harprep and hartid for using the results for many constituents to produce a time series
4. ertid for computing the body tide directly.

To compute loads but not tidal time series, need only nloadf.
Computing a Load

nloadf HOKO 48.202 -124.427 100. m2.gefu green.gbavap.std 1 poly.gefu + > tmp.m2.1

The command line includes (the order is required):

• Station information (name and position)
• Name of ocean model file
• Name of Green function file file
• The phase convention (don’t ask)
• Information on use of a polygon file (optional)

and the result is sent to standard output, which can be redirected to a file.
Example: LSM NS

SCS NS

CHL NS

DHL NS

PFO NS
Example: LSM EW
Questions?
Computing and Combining Loads

nloadf HOKO 48.202 -124.427 100. m2.gefu green.gbavap.std l poly.gefu + > tmp.m2.l

nloadf HOKO 48.202 -124.427 100. m2 tp xo70 green.gbavap.std l poly.gefu - > tmp.m2.g

cat tmp.m2.l tmp.m2.g | loadcomb c > tmp.m2.load

These three commands

• Put loading results from two models (with the polygon used for the boundary) into two files

• Combine these two files to give the total load (vector addition of the loads).
Sample SPOTL Output: `tmp.m2.1`

S HOKO 48.2020 -124.4270 100.
O M2 2 0 0 0 0 0 Straits of Georgia and Juan de Fuca
G GUTENBERG BULLEN GREENS FUNCTIONS JOBO2Q 10/19/71
G Rings from 0.03 to 1.00 with spacing 0.01 - detailed grid used
G Rings from 1.05 to 9.95 with spacing 0.10 - detailed grid used
G Rings from 10.25 to 89.75 with spacing 0.50 - ocean model grid used
G Rings from 90.50 to 179.50 with spacing 1.00 - ocean model grid used
P Polygon to include the Straits of Georgia and Juan de Fuca
P all polygon areas included
C closest nonzero load was 0.09 degrees away, at 48.28 -124.39
C 23 zero loads found where ocean present, range 0.78–3.05 deg
L l Phases are local, lags negative
X
 g 0.2297 107.9319
 p 1.2406 -95.4251
 d 0.2350 -87.3167 0.1802 -97.2629 0.8072 96.1769
 t 22.2885 -30.4658 30.6713 -12.8066
 s 1.6887 -112.2628 4.2123 13.6132 5.7803 -17.1302

Last lines are amp and local phase of gravity (g), potential (p), displacement (d: ENU),
tilt (EN) and strain (ε_{EE}, ε_{NN}, ε_{EN})
Sample SPOTL Output: tmp.m2.g

S HOKO 48.2020 -124.4270 100.
O M2 2 0 0 0 0 OSU TPXO 7.0
G GUTENBERG BULLEN GREENS FUNCTIONS JOB02Q 10/19/71
G Rings from 0.03 to 1.00 with spacing 0.01 - detailed grid used
G Rings from 1.05 to 9.95 with spacing 0.10 - detailed grid used
G Rings from 10.25 to 89.75 with spacing 0.50 - ocean model grid used
G Rings from 90.50 to 179.50 with spacing 1.00 - ocean model grid used
P Polygon to include the Straits of Georgia and Juan de Fuca
P all polygon areas excluded
C closest nonzero load was 0.17 degrees away, at 48.21 -124.69
C 39 zero loads found where ocean present, range 0.83- 9.85 deg
L 1 Phases are local, lags negative
X
 g 5.5521 -178.6621
 p 34.7121 -1.0729
 d 7.3550 178.3120 2.0137 -103.0084 19.4539 178.7385
 t 146.5715 -169.9169 30.0543 -144.0923
 s 16.0916 6.5470 6.7084 168.4417 3.2678 47.7671

When we combine two files, the results part (the last 5 lines) are added; the other lines are concatenated to give a complete record of what was done.
Sample SPOTL Output: `tmp.m2.load`

```
S  HOKO 48.2020 -124.4270 100.
O  M2  2 0 0 0 0 0  Straits of Georgia and Juan de Fuca
G  GUTENBERG BULLEN GREENS FUNCTIONS JOBO2Q 10/19/71
G  Rings from 0.03 to 1.00 with spacing 0.01 - detailed grid used
G  Rings from 1.05 to 9.95 with spacing 0.10 - detailed grid used
G  Rings from 10.25 to 89.75 with spacing 0.50 - ocean model grid used
G  Rings from 90.50 to 179.50 with spacing 1.00 - ocean model grid used
P  Polygon to include the Straits of Georgia and Juan de Fuca
P  all polygon areas included
C  closest nonzero load was 0.09 degrees away, at 48.28 -124.39
C  23 zero loads found where ocean present, range 0.78-3.05 deg
L 1  Phases are local, lags negative
O  M2  2 0 0 0 0 0  OSU TPXO 7.0
G  GUTENBERG BULLEN GREENS FUNCTIONS JOBO2Q 10/19/71
G  Rings from 0.03 to 1.00 with spacing 0.01 - detailed grid used
G  Rings from 1.05 to 9.95 with spacing 0.10 - detailed grid used
G  Rings from 10.25 to 89.75 with spacing 0.50 - ocean model grid used
G  Rings from 90.50 to 179.50 with spacing 1.00 - ocean model grid used
P  Polygon to include the Straits of Georgia and Juan de Fuca
P  all polygon areas excluded
C  closest nonzero load was 0.17 degrees away, at 48.21 -124.69
C  39 zero loads found where ocean present, range 0.83-9.85 deg
L 1  Phases are local, lags negative
X  g  5.6220 179.0940
p  34.6401  -3.1194
d  7.3408  -179.8589  2.1931  -102.5371  19.5748  176.3950
t  130.4428  -163.5393  25.0510  -77.1638
s  15.3493  1.0151  3.4055  136.6995  7.7535  5.3059
```

This is what is produced by `loadcomb c`, combining files.
Using SPOTL for Other Loads

Any load can be gridded and used in place of one of the ocean-tide models – though usually, the load then is purely real, and the output phases are either 0° or 180° (plus or minus).

To get loads on land, the land-sea database must be disabled; this is done (admittedly clumsily) using flags in the Green-function file:

- **F:** Land-sea database determines if point on ocean or not; if not, assumes no load. Invokes bilinear interpolation.
- **C:** Source grid determines if point on land; if not, assumes no load. No interpolation, load is that of ocean cell.
- **L:** Land-sea database determines if point on ocean; if so assumes no load. Invokes bilinear interpolation. This mode is useful for air-pressure loads, which are compensated over the ocean.
- **G:** Source grid determines scope of integration; if no cell, assumes no load. This is the same as C, but the density is assumed to be 1000 kg/m, not the density of ocean water.
An Example: Lake Shasta
Lake Shasta Time Series