Earth Tides: An Introduction
Duncan Carr Agnew

1. Introduction

The motions induced in the solid Earth by tidal forces are known as Earth
tides; we examine these in some detail because they are, in any strain ot tilt record
of reasonable quality, the dominant signal almost all of the time. For borehole
instruments they provide the only signal known well enough to be useful for calibra-
tion. The Earth tides are much easier to model than the ocean tides because the
Earth is more rigid than water, and has a much simpler shape than the ocean
basins—which makes the response of the Earth to the tidal forces much easier to
find, and much less dependent on details. While this is an advantage if your aim is
to compute the Earth tides, it is very much a disadvantage if you want to use Earth-
tide measurements to find out something about the Earth. Since Earth tides can be
described well with only a few parameters, knowing those few parameters does not
provide much information.

1.1. Historical Note

That the tides provide little information on Earth structure helps to explain
why Earth-tide studies have recently been a backwater of geophysics—albeit one in
which a few of us have enjoyed paddling about. There was a time, between about
1870 and 1930, when not a lot was otherwise known about the inside of the Earth,
and Earth tides were central to solid-earth geophysics (Brush 1996). At the start of
this period, one assumption was that the Earth was almost entirely molten (based
on a reasonable extrapolation of the surface temperature gradient). William Thom-
son (later Lord Kelvin) pointed out that, if this were so, the Earth would move up
and down as much as the ocean would, and the measured tide (the difference of the
two motions) would be small compared to the tidal potential—and it isn’t. Kelvin
knew, of course, that this argument works only for equilibrium tides, and had George
Darwin (who we will encounter later in the section on tidal forcing) analyze tide-
gauge data for long-period tides in the ocean. These proved to have an amplitude
which enabled Kelvin to deduce that if the Earth had a uniform rigidity (shear mod-
ulus) this was greater than that of glass and less than that of steel.

Kelvin and Darwin knew that if the earth deformed tidally this deformation
could be measured in the laboratory, and in fact measured for the diurnal and semid-
iurnal tides, which for the solid Earth are close to equilibrium. This would provide
results much more quickly than waiting for the long-period ocean tides to emerge
from the noise. At least this was the plan; when George Darwin (with his brother
Horace) built a tiltmeter they found so much noise that they concluded that “the
measurement of earth tides must remain forever impossible”. But other experi-
menters (notably Hecker, in Germany) showed this was not so, and from 1890 to
1920 there was a burst of tidal tilt measurements. In retrospect the best were made
by A. A. Michelson, who built a miniature ocean at Yerkes Observatory in Wisconsin,
in the form of two 150-m tubes (one north-south and one east-west), each half-filled
with water. The (very small) tides in these were measured (how else)
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interferometrically, and of course for these small bodies of water all the tides were
equilibrium. Effectively, the measurement was one of tilt; this was the first longbase
tiltmeter. Harold Jeffreys, in 1922, used these data to show that the average rigidity
of the Earth was about what Kelvin had found; crucially, this rigidity was much less
than the average rigidity of the mantle as found by seismology, implying that the
core must be of very low rigidity, indeed fluid—the first clear, and generally accepted,
demonstration of this fact.

In this determination (the reverse, in some sense, of Kelvin’s) seismology
played a major role; and the greater resolving power of seismic waves made it possi-
ble to determine far more about Earth structure than could ever be done with tides.
This did not mean that people stopped making the measurements (which were tech-
nically challenging) but it does not appear, especially in retrospect, that much has
come out of it all.

In addition to the need to understand tides for strain measurement, some of
the modern revival of interest in this subject has come from the improvements of

geodetic measurements: the earth tides are a source of motions that need to be taken
into account in modeling these data.

Figure 1.1: An Earth-Tide Flow-Chart
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1.2. An Overview

The flow-chart in Figure 1.1 tries to indicate some of what goes into an earth-
tide (or ocean-tide) measurement. In this, entries in italics represent things we
know (or think we do); ones in boldface (over the dashed boxes) represent things we
can learn about. Though we usually take the tidal forcing to be known, it is of
course computed using a particular theory of gravity; and it is actually the case that
earth-tide measurements are the best evidence available for general relativity as
opposed to some other alternative theories. The large box labeled “Geo-
physics/Oceanography” includes what we can learn about from the tides; the arrow
going around it means that we would see tides (in some quantities) even if the Earth
were oceanless and rigid. And, most importantly, measurements made to find out
about tides can contain other useful information as well: tide gauges tell us about
other oceanographic variations, and methods developed for precise measurements of
earth tides can detect other environmental and tectonic signals.

Some terminology may be helpful at this point. The theoretical tides are
ones that we compute from a set of models; essentially all of earth-tide studies con-
sists of comparing observations with these. The first step is to compute the tidal
forcing, or equilibrium tidal potential, from the astronomy. From these, we can
compute two parts than sum to give the total theoretical tide: the body tides are
what would be observed on an oceanless but otherwise realistic Earth; the load
tides come from the effects of the water being moved about.

We look at the tidal forcing first, and in some detail because the nature of this
forcing governs how we have to analyze tidal data. We next consider the body tides:
how the Earth responds to the tidal forcing, and what effects this produces that we
can measure, including tilt and strain. After this come the load tides, completing
what we need to know to produce theoretical tides. For observed tides, the main
question then is, how to estimate them; so we conclude with a discussion of tidal-
analysis methods.

This subject has attracted perhaps more than its share of reviews. Melchior
(1983) is the great compendium of the classical side of the subject, but is poorly writ-
ten and not always up to date; it must be used with caution by the newcomer to the
field. It does have an exhaustive bibliography. Harrison (1985) reprints a number of
important papers, with very thoughtful commentary. The volume of articles edited
by Wilhelm et al. (1997) is more up-to-date and a better reflection of the current
state of the subject.

2. The Tidal Forces

We begin with the tidal forces, which are those that produce deformations in
the Earth and ocean. While there is basically no geophysics in this subject—it is a
little bit of gravitational potential theory and a lot of astronomy—we will need to
know something about it to understand traditional tidal terminology and the nature
of the tidal signal. From the standpoint of the geophysical user, this can all be taken
as a completely settled subject—indeed, in some ways too settled. The extraordinar-
ily high accuracy of astronomical theory has tempted a series of workers to produce
descriptions of the tides whose precision far exceeds anything we could hope to
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measure: in this field, the romance of the next decimal place has exerted a somewhat
irrational pull. I will try to resist this temptation.

2.1. The Basics: An Elementary View

While our formal derivation of the tidal forcing will use potential theory, we
begin with two elementary arguments using simple mechanics, to clarify some
points that often seem confusing. The first is that the tidal forces are directed away
from the center of the Earth both beneath the Moon (or Sun), and at the antipode to
this point. The easiest demonstration of why this would be so involves a simple
thought experiment. Imagine you are in a (very tall) elevator, and someone cuts the
cable. Then you and the elevator will fall freely, and it will seem to you that there is
no gravity—which is to say that there is no force needed between you and the fbor of
the elevator to keep you in the same position relative to it: you can fbat inside it.
Now, suppose that the top and bottom of the elevator are separated: someone not
only cuts the cable, but removes the walls of the elevator—and you are fbating
(falling!) between the top and bottom. Since the bottom is closer to the attracting
object (say the Earth) than you are, it will experience a slightly greater gravitational
force, and accelerate slightly faster than you do, while the top will accelerate slightly
less. From your perspective, the top will seem to be pulled up and away from you,
and the bottom down and away, just as though there was a force acting away from
you, both towards the Earth and away from it. This is, exactly, the tidal force, which
just depends on gravity not being the same everywhere.

"Earth"
0

Figure 2.1

Matters are rendered more confusing in the real situation because the motion
is along curved orbits. This has led to some confusion about the role of the apparent
force experienced on a moving object, usually called the “centrifugal force”. To see
where this comes in (or, actually, doesn’t) we consider a simplified situation, shown
in the left plot in Figure 2.1. Two bodies (call them the Earth and Moon) orbit about
their barycenter B, which for this two-body problem is fixed. (The figure is in the
orbital plane). Assume that the Earth rotates at the same rate as it orbits, so that
an observation point O is fixed in relation both to C (the center of the Earth) and B
(This is in fact trues for the Moon). The rate of rotation has angular velocity w. The
point at O experiences a centrifugal force along the line BO, which we can write as

@?BO = 0*(BC + CO) (2.1)
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where we have simply used the triangle of forces. But an acceleration along CO is,
in an Earth-fixed reference system, purely radial and unchanging, so we may ignore
it. The remaining part, »>BC, does change with time, as the direction BC changes.
But this acceleration is just the opposite to the attraction of the Moon at C, which is
what keeps the Earth in orbit around B.

The total force at O, neglecting the unchanging radial part, is thus the attrac-
tion of the Moon at O, plus the w?>BC part of (1). But this is just equal to the attrac-
tion at O minus that at C. The tidal force is thus a differential force, distributed as
shown in Figure 2.1 (right). Under the attracting body (which is called the sub-
body point), and at the antipode of that point, it is oppositely directed in space,
though in the same way (up) viewed from the Earth. It is in fact larger at the sub-
body point than at its antipode, though if the ratio /R is small (for Figure 2.1 it is
1/60) this difference is also small, as we will now derive more formally.

2.2. The Tidal Potential (I)

We now derive the tidal force—or rather, we derive the tidal potential, as this
turns out to be more useful. If M, is the mass of the attracting body, the gravita-
tional potential, V,,,, from it at O is

GM, GM, 1
Vi == = (2.2)

using the cosine rule from trigonometry. Here r is the distance of O from C, p the
distance from O to M, and « the angular distance between O and the sub-body point
of M. We can write the square-root term as a sum of Legendre polynomials, using
the generating-function expression for these, which yields

GM, 2 orf

VtOt = R ferd DE D

P,(cos ) (2.3)

The n =0 term is constant in space, so its gradient (the force) is zero; it can thus be
discarded. The n =1 term is

¢ rcosa= x (2.4)

where x is the Cartesian coordinate along the C-M axis. The gradient of this is a
constant, giving a constant force along the direction to M. But this is just the orbital
force at C, which we subtract to get the tidal force. Doing the same with the poten-
tial, the tidal potential is just (3) with the two lowest terms removed:

GM, 20r (f
R(t) ,UR@)U

Viia(t) = P [cos a(t)] (2.5)

where we have made R and «, as they actually are, functions of time ¢z—which
makes V such a function as well.

Now we can put in some numbers for the actual situation. If r is the radius of
the Earth, then for the Moon r/R =1/60, so that the importance of terms in the sum
(5) decreases fairly rapidly with increasing n; in practice we need only consider n =2
and n =3, and perhaps n =4 for the highest precision; the n =4 tides are just
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detectable in very-low-noise gravimeters. These different values of n are referred to
as the degree-n tides. For the Sun, r/R =1/23,000, so we need only consider the
degree-2 solar tides.

If we look at degree-2, the magnitude of V,;; is proportional to GM ,/R3. If we
normalize this quantity to make the value for the Moon equal to 1, the value for the
Sun is 0.46, for Venus 50107, and for Jupiter 6107, everything else being even
smaller. To any precision we are likely to need for actual measurements, we need to
consider only the lunisolar tides—though, as we will see, some expansions of the
tidal potential do include planetary tides.!

2.3. The Tidal Potential (IT)

Further understanding of the tidal forces comes if we put the expressions into
geographical coordinates rather than distance from the sub-body point. Suppose our
observation point O is at colatitude 8 and east longitude ¢ (which is fixed) and that
the sub-body point of M is at colatitude 6'(¢) and east longitude ¢'(¢). Then we may
apply the addition theorem for spherical harmonics to get, instead of (5),

GM, 2 0Or 1 4n

Viia = R ngz RO 2n 41 mz_n Y, (0'@), 8'@)Y (6, 9) (2.6)

where we have used the fully normalized complex spherical harmonics defined by
Y m(6, 4) = N™ P™(cos 6)e'™’ 2.7
where N is the normalizing factor

Dn +1 (n—m)!é

m — (=1
n = )547: (n+mi 7

(2.8)

and P} is the associated Legendre polynomial of degree n and order m, as given in
Munk and Cartwright (1966). As is true for any part of geophysics that employs
spherical harmonics, it is important to be aware of other possible normalizations.

To make the tidal potential more meaningful we express it as V;/g, where g
is the Earth’s gravitational acceleration; this has the dimension of length, and can
easily be interpreted as the change in elevation of the geoid, or of an equilibrium
surface such as an ideal ocean. (Hence its name, the equilibrium potential). If, as

is conventional, g is taken to have its value on the Earth’s equatorial radius r,,, and
r is held fixed at that radius in (6), we get
Vtid Ma © 4x [req |jl+1 n %
— = —= Y, .(0,0)Y,..(6
g reqM®’§22n+1DRD mzz_n nm( 7¢) nm(,¢)
= S K S Y (0, 00 6,9 (2.9)
_n:2 n 2n+1 - nm >¢ nm ,¢ .

L At very high precision, we also need to consider also another small effect, namely
that the acceleration of the Earth is not exactly that given by a potential of form (4).
This would be true for a spherically symmetric Earth; for the real Earth, the Cy term
in the gravitational potential, makes the acceleration of the Moon by the Earth (and
vice-versa) depend on more than just (4). The resulting tides are however small.
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where the constant K includes all the physical quantities:

K =r % Dﬁﬁﬂ
"M M, UORO
where M, is the mass of the Earth and R is the mean distance of the body; the

quantity £ = R/R expresses the normalized change in distance. For the Moon, K is
0.35837 m, and for the Sun, 0.16458 m.

In both (6) and (9), we have been thinking of 8 and ¢ as giving the location of a
particular place of observation; but if we consider them to be variables, the Y ,,,,(8, ¢)
describes the geographical distribution of V/g on the Earth. The time-dependence of
the tidal potential comes from time variations in R and ¢', which vary relatively
slowly because of the orbital motion of M around the Earth; ¢' varies much more
rapidly as the Earth rotates beneath M.? The second sum in (9) thus separates the
tidal potential of degree n into parts, called tidal species, that vary with frequen-
cies around 0, 1, 2, ... n times per day; for the largest tides (n, the degree, being 2),
there are three such species, with names and latitude dependences given in Table 1.

(2.10)

Table 1: Main Tidal Species in the Potential
Name Colatitude dependence of V,;;/g

Diurnal 3 sin @ cos @

m
0 Long-period 3cos?6-1
1

2  Semidiurnal 3sin%e

The diurnal tidal potential is largest at mid-latitudes and vanishes at the equator;
the semidiurnal part is largest at the equator; both vanish at the poles, where the
long-period is largest. (As we will see, this does not exactly carry over to the strain
tides, which depend on surface gradients of the potential).

To proceed beyond this it is desirable to separate the time-dependent and
space-dependent parts a bit more explicitly. We adopt the approach of Cartwright
and Taylor (1971) who produced what was for a long time the standard harmonic
expansion of the tidal potential. We can write (9) as

Vtid 2 n+l 477'- D ] 1 L * ’ r * o D
= Z Kng 9 |jvn0(9 ’ ¢ )YnO(e’ ¢) + Z Yn—m(e ’ ¢ )Yn—m(e’ ¢) + Ynm(e ’ ¢ )Ynm(e’ ¢)|:|
n=2 n+l 0 m=1 0

< n+l 4z U < * 0

=2 K.¢ Y 10(6',00Y 10(6,0) + 2 2ReY (6", 9)Y (6, 9)] O

n=2 2n +1 O m=1 0

Now define complex (and time-varying) coefficients T, (t) = a,(t) + ib}'(¢) such that

Viia Oo o 0
i —Re > S T, ()Y (6,00 (2.11)
@=2 m=1 0
and we find that these coefficients are, for m =0,
2 If you think this sounds like an Earth-centered description of what is happening,

you are correct—for this application a geocentric approach is perfectly correct, and
often more clear.
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1
_rre 3 n+1 p0 '
v DKnaf P’ (cos ") (12a)
and, for m #0
T =y ST g el Nm pmigid (12b)

from which we can find the real-valued, time-varying quantities a)'(¢) and b}'(¢),
which we will use below in computing the response of the Earth.

2.4. Computing the Tides (I): Direct Computation

Equations (11) and (12) suggest a straightforward way to compute the tidal
potential (or, as we will see, other theoretical tides), by finding the T',,,, as a function
of time. This is to use an ephemeris for the Sun and Moon (and the other planets if
we wish): that is, a description of the location of these bodies in celestial coordinates.
By including the rotation of the Earth, we can convert these positions to the coordi-
nates of the sub-body point, ' and ¢' and the distance R, and then use equation (12).
Once we have the T,,,, we can combine these with the spatial factors in (11) to get
Viia

, either for a specific location or as a distribution over the whole Earth. As we

will see below, this formulation carries over with only minor modifications to the var-
ious geophysical quantities, including tilt and strain. And, these modifications
involve no changes to the T',,,: we need to do the astronomy only once.

Such a direct computation also has the advantage, compared with the har-
monic methods to be discussed in the next section, of having an accuracy limited
only by that of the ephemeris. If we take derivatives of (12) with respect to R, ¢' and
¢', we find that relative errors of 10 in V,;/g would be caused by errors of 7 x107°
rad (14") in ¢ and ¢', and 3x107° in £. (We pick this level of error because, as we
will see below, it is much less than the errors in finding tidal constants of strain
data, given typical noise levels.) Note that the errors in the angular quantities cor-
respond to errors of about 400 m in the location of the sub-body point, so our model
of Earth rotation, and our station location, needs to be good to this level. This might
not seem very onerous, but note that it requires 1 second accuracy in the timing of
the data.

There are two types of ephemerides available. An analytical ephemeris is a
closed-form algebraic description of the motion of the body as a function of time.
Obviously this can be converted directly into computer code. The most precise
ephemerides are numerical, coming from numerical integration of the equations of
motion, with parameters chosen to best fit some set of observational data. While
such direct integration is now standard (in, for example, the estimation of GPS satel-
lite orbits), it was not practical until the 1960’s—and it remains a specialized area,
even within celestial mechanics. For routine computation it also poses the difficulty
that the results are available only as tables, not necessarily covering the time of
interest.

The first tidal-computation program based directly on an astronomical
ephemeris was that of Longman (1959), still in use for making rough tidal
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corrections for gravity surveys. Longman’s program, like some others, computed
accelerations directly, thus somewhat obscuring the utility of an ephemeris-based
approach to all tidal computations. Munk and Cartwright (1966) developed this
method for the tidal potential (it is their treatment that has been followed here),
though (like Longman) using a fairly simplified lunar ephemeris. Subsequent pro-
grams such as that of Harrison (1971), incorporated into the erti d routine dis-
tributed with the PIASD and SPOTL packages, and Tamura (1982) used a subset of
the lunar theory of Brown, as did the more precise program of Broucke, Zurn, and
Slichter (1972). Merriam (1992) used even more precise ephemerides.

Numerical ephemerides have been used primarily to produce reference time
series, rather than for general-purpose programs. Most (e.g., Hartmann and Wenzel
1995) have relied on the solar system ephemerides produced by JPL. The main pur-
pose has been to use these series as the basis for a harmonic expansion of the tidal
potential, a standard method to which we now turn.

2.5. Computing the Tides (II): Harmonic Decompositions

Since the work of Thomson and Darwin in the 1870’s and 1880’s, the most com-
mon method of analyzing and predicting the tides, and of expressing tidal behavior,
has been through a harmonic expansion of the tidal potential. In this, we express
the T,,, as a sum of sinusoids, whose frequencies are related to combinations of
astronomical frequencies and whose amplitudes are determined from the expres-
sions in the ephemerides for R, 8, and ¢'. In such an expansion, we write the com-
plex T, ’s as

K?’lm .
Tom(t) = 3. Appyp e @ liomt * Oimm) (2.13)
k=1

where we sum K ,,, sinusoids with specified amplitudes, frequencies, and phases, for
each degree and order. The individual sinusoids, or harmonics, are called tidal con-
stituents.

This method as the advantage that once a table of constituent amplitudes has
been produced it remains valid for a long time. What this also does (implicitly) is to
make results appear in the frequency domain, something as useful here as in other
parts of geophysics. In particular, we can use the same frequencies for any other
tidal phenomenon, provided that it comes from a linear response to the driving
potential—which is essentially true for the Earth tides. So, while such an expansion
was first used for ocean tides (for which it remains the standard) it works just as
well for Earth tides of any type.

We can get the fhvor of this approach, and also introduce much important ter-
minology, by finding the tides from the simplest possible representation of the
ephemerides. We assume that the Sun and the Moon move in the same way: in a cir-
cular orbit around the Earth, with the orbital plane inclined at an angle ¢ to the
Earth’s equator. We further assume that the speed in the orbit is constant, with the
angular distance from the ascending node (where the orbit plane and the equatorial
plane intersect) being B¢. (This is called the celestial longitude). Finally, we assume
that the rotation of the Earth causes the terrestrial longitude of the ascending node
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(fixed in space) to be Qt; Q is the angular speed of the Earth relative to the ascend-
ing node (1 revolution per sidereal day). For simplicity, we set the phases to be such
that at ¢ =0 the body is at the ascending node and longitude 0° is under it. Finally,
we take just the real part of (9), and ignore factors of magnitude 1 (we do not worry
about signs).

With these simplifications we consider first the diurnal degree-2 tides
(n=2,m=1). After some tedious spherical trigonometry and algebra, we find that
for each body,

Vig= KAE(ngsins cos € sinQt + % sin £(1 + cos ¢) sin(Q - 28)t

+ % sin £(1 — cos &) sin(Q + Zﬁ)tg

This gives a harmonic decomposition of three constituents for each body, with argu-
ments (of time) Q, Q -2, and Q +24; their amplitudes depend on ¢, the inclination
of the orbital plane. If this were zero, there would be no diurnal tides at all. In prac-
tice, we can take it to be 23.44°, the inclination of the Sun’s orbital plane (this plane
is called the ecliptic). This angle is also the mean inclination of the Moon’s orbit—
more on this below. This produces the constituents given in Table 2.

Table 2: Diurnal Tides (Simple Model)

Argument Moon Sun
Freq. Amp. Freq. Amp.
(cpd) (m) (cpd) (m)
Q 1.002738 0.254 1.002738 0.117

Q-2 0.929536 0.265 0.997262 0.122
Q+28 1.075940 0.011 1.008214 0.005

Here the frequencies are given in cycles per day (cpd). Both the Moon and Sun pro-
duce a constituent at 1 cycle per sidereal day. For the Moon, g corresponds to a
period of 27.32 days, and for the Sun 365.242 days (one year), so the other con-
stituents are at +2 cycles per month, or +2 cycles per year, from this. Note that there
is not a constituent at 1 cycle per lunar (or solar) day—while this may seem odd, it is
not unexpected given the degree-2 nature of the tidal potential.

It is convenient to have a shorthand way of referring to these constituents;
unfortunately the standard naming system, now totally entrenched, was begun by
Thomson for a few tides, and then extended by Darwin in a somewhat ad hoc man-
ner. The result is a series of conventional names that simply have to be learned as is
(though only the ones for the largest tides are really important). For the Moon, the
three constituents have the Darwin symbols K;, O;, and OOy; for the Sun they are
K; (again, since this has the same frequency for any body), P; and ;.

Next we consider the m =2 case, for which

4
Vig = KAEQSE E%l - cos? &) cos 2Q¢ + % (1 + cos £)? cos(2Q — 2 8)t
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+ % (1 - cos €)? cos(2Q + Zﬂ)tg

and so again we have three constituents, though the third one, for ¢ equal to 23.44°,
is very small. Ignoring this one, we get the results in Table 3, with three distinct
constituents.

Table 3: Semidiurnal Tides (Simple Model)

Argument Moon Sun
Freq. Amp. Freq. Amp.
(cpd) (m) (cpd) (m)
2Q 2.005476 0.0.055 2.005476 0.025

2Q-2p 1.932274 0.640 2.00000 0.294

The Darwin symbol for the first argument is K,; again, this frequency is the same for
the Sun and the Moon, so these combine to make a lunisolar tide. The second argu-
ment gives the largest tides: for the Moon, M, (for the Moon) or Sy (for the Sun), at
precisely 2 cycles per lunar (or solar) day respectively.

Finally, the m =0, or long-period, case has a constituent at zero frequency (the
so-called permanent tide), and another with an argument of 24, making con-
stituents with frequencies of 2 cycles/month (Mf, the fortnightly tide, for the Moon)
or 2 cycles per year (Ssa, the semiannual tide, for the Sun). The permanent tide is
usually removed from calculations of the theoretical tide used for tidal analysis.

This simple model also demonstrates one other attribute of the tides that
becomes very important for an analysis scheme. The amplitudes of all the tidal con-
stituents depend on the orbital inclination ¢. For the Sun this quantity (the oblig-
uity of the ecliptic) is nearly invariant (though very slowly decreasing). For the
Moon it varies by +5.13° from the obliquity, with a period of 18.61 years. All the
lunar tides thus show a periodic variation in amplitude, known as the nodal modu-
lation.? Our simple expressions above show that the resulting variation in M, is
about 3%, but for O; it is for +18%. We can represent such a modulated sinusoid
with an expression of the form cos wyt(1 + A cos w,,t), with @y > w,,; this can be
shown to be the same as

cos wyt + % A cod(omegagy + w,,)t] + % A cod(omegag — w,,)t]

which is to say that we can represent this modulation, in a purely harmonic develop-
ment, through three constituents, one at the central frequency and two smaller ones
(called satellite constituents) separated from this by 1 cycle in 18.61 years.

The next level of complication beyond our simple ephemeris would include the
ellipticity of the orbits, and all the periodic variations in ¢ and other orbital parame-
ters. This leads to a great many constituents. The first such expansion, including
satellite constituents, was by Doodson (1921), done algebraically from an analytical
ephemeris; the result had 378 constituents. Doodson needed a nomenclature for
these tides, and introduced one that relies on the fact that, as our simple ephemeris
suggests, the frequency of any constituent is the sum of multiples of a few basic

3 The reason for this name is that the change in ¢ come from the motion of the line
of intersection of the Moon’s orbital plane with the Sun’s orbital plane; this is the line
of nodes.
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frequencies. In practice, we can write the argument of the exponent in (11) as

6 6
opt + ¢, = ? lewlgt + ZZ Dy, ¢, (2.14)
=1 =1

where the w;’s are the frequencies corresponding to various astronomical periods,
and the ¢,’s are the phases of these at some suitable epoch; Table 4 gives a list.* The
[ =1 frequency is chosen to be one cycle per lunar day exactly, so for the M, tide the
Ds are 2,0,0,0,0,0. This makes the solar tide, Sy, have the D;’s 2,2,-2,0,0,0. In

4 Recent tabulations extend this notation with up to five more arguments to
describe the motions of the planets. As the tides from these are small we ignore them

here.

© 2005 D. C. Agnew



July 2005 Earth Tides 13

practice, all but the smallest tides have Dj, ranging from -5 to 5 for [ greater than
one; Doodson therefore added 5 to these numbers to make a compact code, so that M,

becomes 255855 and S, 273[355. This is called the Doodson Number; the numbers
without 5 added are sometimes called Cartwright-Tayler codes.

Table 4: Fundamental Tidal Frequencies

!l Frequency Period What
(cycles/day)
1 09661368 24"50™28.3° Lunar day
2 0.0366011  27.3216¢ Moon’s longitude: tropical month
3 0.0027379  365.2422¢ Sun’s longitude: solar year
4 0.0003095 8.847Y Lunar perigee
5 0.0001471 18.613 Lunar nodes
6  0.0000001 209417 Solar perigee

“Longitude” refers to celestial longitude, measured along the ecliptic.

Figure 2.2 shows the full spectrum of amplitude coefficients actually for the
recent expansion of Hartmann and Wenzel 1995). The top panel shows all con-
stituents on a linear scale, making clear that only a few are large, and the separa-
tion into different species around 0, 1, and 2 cycles/day: these are referred to as the
long-period, diurnal, and semidiurnal tidal bands. The two lower panels show
an expanded view of the constituents in the diurnal and semidiurnal bands, using a
log scale of amplitude to include the smaller constituents. What is apparent from
these is that each tidal species is split into a set of bands, separated by one
cycle/month; these are referred to as groups. Further splitting at smaller frequen-
cies is also apparent; on this scale the nodal modulation is visible only as a thicken-
ing of some of the lines. As we will see, all this fine-scale structure poses a challenge
to tidal analysis methods.

Amplitude Distribution of Degree—2 Constituents
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Since Doodson’s rather heroic effort provided the tidal potential to more than
adequate accuracy for studying ocean tides, further developments did not take place
for the next 50 years, until Cartwright and Tayler (1971) revisited the subject. They
computed the potential, using (9), from a more modern lunar ephemeris, and then
used special Fourier methods to analyze, numerically, the resulting series, and get
amplitudes for the various constituents. The result was a compendium of 505 con-
stituents, which (with errors corrected by Cartwright and Edden 1973) soon became
the standard under the usual name of the CTE representation.?

As mentioned above, there have been a number of more extensive computations
of the tidal potential and its harmonic decomposition, driven by the very high preci-
sion available from the ephemerides, the relative straightforwardness of the prob-
lem, and (perhaps) the need for more precision for analyzing some tidal data (gravity
tides from superconducting gravimeters). Particular expansions are those of Bulles-
feld (1985), Tamura (1987), Xi (1987), Hartmann and Wenzel (1995) and Roosbeek
(1995). The latest is that of Kudryavtsev (2004), with 27,000 constituents. Figure
2.3 shows the amplitude versus number of constituents for different expansions
(including that used in the PIASD program har ti d); clearly, to get very high accu-
racy demands a very large number. But not many are needed for a pretty good
approximation; and one important result of these efforts is to show that the CTE
expansion is good to about 0.1% of the tide in the time domain—and for the analysis
of anything but the lowest-noise gravity-tide data, this is quite adequate (we will
discuss this further in the notes on power spectra).

2.6. Radiational Tides

A harmonic treatment can also be useful for the various phenomena associated
with solar heating, whether temperature effects on the instrument, thermoelastic
strains induced in the ground, or the atmospheric tides (thermally induced). The
actual heating is usually complicated, but a first approximation makes it propor-
tional to the cosine of the Sun’s elevation during the day, and of course zero at night.
This asymmetry produces constituents of degree 1 and 2; these have been tabulated
by Cartwright and Tayler (1971) and are shown in Figure 2.4 as crosses (for both
degrees), along with the tidal potential constituents shown as in Figure 4. The unit
for the radiational tides is S, the solar constant. The expanded scale allows us to
add a few more Darwin symbols.

That some of these thermal tidal lines coincide with lines in the tidal potential
poses a real diffi culty for precise analysis of the latter. Strictly speaking, if we have
the sum of two constituents with the same frequency, it will be impossible to tell how
much each part contributes. The only way to resolve this is to make additional
assumptions about how the response to these behaves at other frequencies. Even
when this is done, there is a strong likelihood that estimates of these tides will have
large systematic errors—which is why, for example, the large K; tide is not used in
estimating borehole strainmeter coupling, the smaller O, tide being used instead.

5 A few small constituents at the edges of each band, included by Doodson but omit-
ted by Cartwright, are sometimes added to make a CTED list.
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3. Tidal Response of the Solid Earth

For most purposes, the tidal response of the Earth is found assuming that it is
SNREIO. This ungainly acronym (borrowed and extended from normal-mode seis-
mology) stands for an Earth which is Spherical, Non-Rotating, Elastic, Isotropic,
and (most important) Oceanless. Note that Spherical means completely spherically
symmetric, and Isotropic means that the Elasticity is the same in all directions at
each point. However, variation in the elastic properties with depth is allowed; other-
wise we would have to add, Homogeneous.

In addition to these restrictions on the Earth model, we add one more about
the tidal forcing: that it has a much longer period than any normal modes of oscilla-
tion of the Earth so that we can use a quasi-static theory, taking the response to be
an equilibrium one. This is in fact an excellent approximation, since the longest-
period normal modes for such an Earth have periods of an hour or less (with one
exception to be noted). This is in strong distinction to the situation for the oceans,
which have barotropic modes of oscillation with periods close to the diurnal and
semidiurnal tidal bands (sometimes, as in the Bay of Fundy, very close indeed).

With all these restrictions and simplifi cations, the Earth’s response to the tidal
potential becomes very simple to describe, though not to compute. If the potential is
of degree n (the order m does not matter in this case), and at some surface location is
V, with potential height V/g, then the distortion of the Earth caused by tidal forces
produces an additional gravitational potential %,V, a vertical (that is, radial) dis-
placement A,V/g, and a horizontal displacement [, ((0V/g). These dimensionless
quantities are Love numbers, after A. E. H. Love (though the parameter [ was
actually developed by T. Shida). For a standard modern earth model (PREM)
hy =0.6032, ky =0.2980, and I, =0.0839. (For comparison, the values for the much
older Gutenberg-Bullen earth model are 0.6114, 0.3040, and 0.0832—not very differ-
ent).

The classical goal of Earth-tide studies was to measure Earth tides and from
such measurements deduce the Love numbers and from them Earth structure. As
noted above, after some successes this program was overtaken by seismology (not
that this seems to have stopped its practitioners), because the values of the Love
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numbers are actually quite insensitive to Earth structure. At present it is more
common to take the Love numbers to be known and use them to predict an observ-
able (for example, displacement). Such predictions, to be made with full precision,
have to allow for the Earth not being SNREIO, which produces modifications. In
increasing order of importance these are:

1. The ellipticity of the Earth means that the response to forcing of degree n
includes other spherical harmonics; while for a time this was thought to imply
a large latitude dependence in the Love numbers, this is not true—but there is
an effect of order 1073.

2.  The mantle is only imperfectly elastic (finite @). This has two effects on the
Love numbers; they become complex (small imaginary parts) and because of
dispersion they have different values with frequency (and so the tidal values
are different from the values appropriate for seismic frequencies).

3.  The Earth’s ellipticity extends to the core-mantle boundary, and as such allows
a free-oscillation mode in which the fliid core (restrained by pressure forces)
and solid mantle precess around each other (this is an effect both of the elliptic-
ity and the rotation). This mode of oscillation is known as the Nearly Diurnal
Free Wobble or Free Core Nutation. It is not large itself, but it does produce a
frequency-dependence in the Love numbers near 1 cycle/day. It also affects the
Earth’s response to the tidal torques that cause astronomical precession and
nutation, and indeed can best be measured astronomically. Measurements of
the period of this resonance, both in the Earth tides and in the nutation, sug-
gest that the ellipticity of the core-mantle boundary departs measurably from
what would be expected in a hydrostatic Earth: a deep-earth result from astro-
nomical data, which seems to be explicable as distortion of the core-mantle
boundary by mantle convection.

4. The most important departure from SNREIO is that the real Earth has oceans,
and these respond, in complicated ways, to the tidal potential. The resulting
motions and deformations of the solid Earth are called load tides; given both
their importance and their complexity, we discuss them in detail in a separate
section.

3.1. Some Combinations of Love Numbers (I): Gravity and Tilt

Of course, the change in the potential is not measurable; and prior to the devel-
opment of space geodesy, neither were the vertical or horizontal motions. What
could be observed was the ocean tides, tilt, changes in gravity, and local deformation
(strain), each of which possesses its own expression in terms of Love numbers. We
now derive some of these. We start with the two “classical” earth-tide quantities,
gravity and tilt. These both have the feature, unshared with any other earth tide,
that they would exist even if the Earth were perfectly rigid. It is therefore standard
to express these tides in terms of a ratio to the rigid-earth tides, an approach fairly
embedded in the literature, even though it is inapplicable to displacement or strain.

To start, consider the tidal tilts. Since tilt is just the slope of the potential, it
scales in the same way that the potential itself does; so the expression for tilt and for
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the equilibrium ocean tide is the same. The total tide-raising potential height is
1 +#%,)V/g, but the solid earth (on which a tide gauge sits) goes up by ~,V/g, so the
effective tide-raising potential is (1 + &, — h,)V/g, sometimes written as y,V/g, with
v, being called the diminishing factor to be applied to the tide-raising potential.
For the PREM model it is 0.6947: not a small correction.

The effect of tides on measured gravity was, prior to space geodesy, the most
often measured tidal effect. For this, we need to include the radial dependence of the
potential. Using a for the local surface radius, the tidal potential is, for tides of
degree n,

+1
v,rd v, 2o

"0 " "Or O @1
where the first term is the potential caused by the tidal forcing (and for which we
have absorbed all non-radial dependence into V), and the second is the additional
potential induced by the Earth’s deformation. The corresponding change in local

gravitational acceleration is the radial derivative of the potential:®

+1ED Dl 0
EVnEtVﬁ k o M = VnE%—(n+1)ﬁD (3.2)

or "0 TG0 g = ap
In addition to this change in gravity from the change in the potential, there is a
change in g from the gravimeter being moved up by an amount A,V ,/g. This dis-
placement is multiplied by the gradient of g to get the gravity change. To get the
gradient, remember that g = GM/r? for r = a; we then have

g -0GM mdUl  2g
Epe =—
or  or Da2 D‘Du:a a

where we have adopted the earth-tide convention that a decrease in g is positive
(ground up). Combining this with (2) we get that the change in g is

(3.3)

Lh [n+1 2h, 0 nVv, 0O m+1 2 0
%n*’ n|:|: n|j-_ %n*’ihnm
[f’ 0 a a g a On

The nV,/a is the tidal change in g that would be observed on a rigid Earth (for
which A and % are zero); the term which this is multiplied by, namely

V,.0- (3.4)

2 m+1Q
1+ghn On E{en (3.5)

is often written as §, and called the gravimetric factor. For the PREM model and
the degree-2 tides, 5, =1.1563: the gravity tides are only about 16% larger than they
would be on a completely rigid Earth, so that most of the tidal gravity signal shows
only that the Moon and Sun exist, while giving no information about the Earth.

6 Actually, not quite. Gravimeters are always set up to measure along the local ver-
tical, which is not the radius vector, but (very nearly) the normal to the ellipsoid. It
was taking gravity to be measured along the radius vector that produced the apparent
large latitude effect.
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3.2. Combinations of Love Numbers (II): Strain Tides

Again considering the tidal potential of degree n, the displacements at the sur-
face of the Earth (r = a) will be, in spherical coordinates,

g 7 g 06 ?" gsing 9¢
by the definitions of the Love numbers [/,, and &,. The surface strains are then
1 U @vu
esazi[hn ln 629['
20
1 U ov 1, vD
esp = — [h,V +1,cot0 — + —=

. 90 siné %B

I Up2yv av U
%" gasing %Hagb 09
where the shear strain is tensor strain, not engineering strain. We next write the
tidal potential, following equations (2.11) and (2.12), as
VvV n=o0o n
2 = > > NP (cos8)la,(t)cosmg + b (t) sin mg]

n=2 m=0

The following expressions then give the formulae for the three components of
surface strain for a particular n and m ; to compute the total strain these should be
summed over all n > 2 and all m from 0 to n (though in practice the tides with n > 3
or m = 0 are unobservable).

€09 =
Nnm -2 2 2 m m
— ghn sin® 6 + [,,(n” cos® 6 — n)} P (cos 0) — 21,,(n —1)X(n + m) cos 6 P} (cos )
a sm- 0
+1,(n +m)(n+m-1)P; ,(cos Q)Etgzn’"(t) cosmg¢ + b}'(t) sin m(/ﬁg
oy =
N7 . 2 2 2)) pm m U
— ghn sin® 6 + [,,(n cos® 0 — m“} P} (cos 6) — [,,(n + m) cos 8P, ;(cos 6)
a sin® 6 g
[%n’"(t) cosm¢ + b'(t) sin m¢g
eg¢ =
m Ny Ly %n ~1) cos 8P™(cos 6) — (n + m)P™(cos Q)Etgy’"(t) cos m¢ — a’(t) sin mo"
a sin® 6 " nl . " 0
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Note that the combination of the longitude factors with the a)'(¢) and b;'(t) mean
that e,y and e, are in phase with the potential, while e, is not.

It is useful to have explicit expressions for the largest tides, with n = 2 and m =
1 and 2. Taking a = 6.371 x 10® meters, the expressions for strain are:

n=2 m=1:

ego = — 2K (hy — 4l,) sin 6 cos 6 [ad(t) cos ¢ + bl(¢) sin ¢]
eys =~ 2K (hg —2l,) sin 6 cos 6 [al(t) cos ¢ + bi(t) sin ¢]

eqy =~ 2Kl, sin 6 [al(t) sin ¢ — bi(¢) cos ¢]
n=2 m=2:

0 = K[ho sin® 6 + I5(4 cos® 6 —2)] MaZ(t) cos2¢ + b3(t) sin 2]
ey9 = K[hy sin® 6 + 15(2 cos® 0 —4)] Dad(t) cos 2¢ + b3(t) sin2¢]

egy = —2Kly cos 6 [a3(¢) sin2¢ — b3(t) cos 2¢]

where K =6.063 x108. The strain along a direction with azimuth ¢ (measured east
from north) is

£=ey,cos’g+ €4y sin® ¢ - 2eg, COS ¢ sin ¢

One consequence of these expressions is that the areal strain, %(ege +e,) is
\% . . .
equal to g—(h2 —-3l,): so for a SNREIO Earth, areal strain, vertical displacement,
a

the potential, and gravity are all scaled versions of each other—as is volume strain,
since for the tides the free-surface condition makes this a scaled version of areal
strain.

Figure 6 shows the result of combining such a model with the known tidal
forces, to show how the rms amplitude of the body tide in strain would vary with lat-
itude on an elastic, oceanless earth. The left plot shows the rms tides in the two
observable bands, for azimuths of 0°, 30°, 60°, and 90°: perhaps the most interesting
feature is that the EW semidiurnal tides go to zero at 52.4° latitude. The tides are
largest for the NS strain, and least for the EW. Tilt tides (not shown) are about four
times larger than strain tides because they involve the direct attractions of the sun
and moon; the purely deformational part is about the same size as the strain tide.

4. Tidal Loading

A large part of the difficulty in using earth tides to make inferences about the
Earth lies in the signals caused by the ocean tides: a good example of one scientist’s
signals being another one’s noise. The mass flictuations associated with the ocean
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RMS Linear Strain Tides on a SNREIO Earth

Diurnal & Semidiurnal Total
16 16
14:Solid 2 cpd, dotted 1 cpd 14l Azimuth 0° (NS)
125 azimuth 0° (NS) 121
10 10 -
8

90° (EW)

RMS Tidal Strain (1079)
[00]

o N O
I

80 60 40 20 0
N Latitude N Latitude
Figure 6

tides would cause changes in the potential even on a rigid Earth, from the attraction
of the water; on the real Earth they also cause the Earth to distort, which causes
more change in the potential, plus displacements. All these make up the load tides,
which are combined with the body tide to make up the total theoretical tide.

4.1. Basic Theory for Computing Loads

Given an ocean-tide model, the loads can be computed in two ways. One is to
expand the tidal elevation in spherical harmonics; this is usually done for a particu-
lar constituent, with the tidal elevation being taken to be complex to express the
amplitude and phase. We can write this expansion of the complex tidal elevation H
as:

[o0) n
H0,9)= 2 2 HunYun(6,9) (4.1)
n=0 m=-n
where 6 and ¢, and Y ,,, are as in the section on tidal forcing. Note that there are
significant high-order spherical-harmonic terms in H,,,, if only because the tidal
height goes to zero over land: any function with a step behavior will decay only grad-
ually with increasing degree.

To compute the loads from this, we can use an expression such as, for the verti-
cal displacement (for example)

2 2 NaHumYon(6,9) (4.2)
n=0 m=-n
or for the induced potential
2 2 8K HunY un(6,9) (4.3)
n=0 m=-n

Here the A',, and %', are called load Love numbers, since they are like the regular
Love numbers, but are computed for a different boundary condition: the case in
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which the surface of the Earth experiences a normal stress of given spherical har-
monic degree, rather than this surface being a free surface and the interior experi-
encing a body force. For a spherical Earth these load numbers depend only on the
degree n, not on the order m.

Many terms are needed for a sum in (4.2) or (4.3) to converge, but such a sum
provides the complete displacement or potential over the whole Earth. If we only
want the loads at a few places, a better method is to use a convolution. (There is a
strict analogy with Fourier transforms: we may convolve two functions, or multiply
their transforms.) The general convolution relation is an integral over the sphere (in
practice over the oceans):

b4 2

n[ de ! d¢Gy(6,9,6',¢)pgH (6, ¢)sin 6 (4.4)

where G is the Green function for an effect (of whatever type) at ¢',¢' from a
point load (5-function) applying a force of amount pgHdésinod¢ at 6,¢4. For a
spherically symmetric Earth, G; will depend primarily on the angular distance A
between 6, ¢ and &', ¢', but not on their specific values. Given this independence of
geographical coordinates, we can write (4.4) as an integral over distance A and
azimuth 8 from the location of an observation to the load:

T 27

z[ dn J doG (B, 0)pgH (D, 6) sin A (4.5)

where G}, depends on 4 only through trigonometric expressions for vector or tensor
quantities (tilt and strain).

This equation is the basis for most computations of ocean loads; to find it in
practice we need:

A. A description of H: that is to say, an ocean-tide model.

B. Related to (A), a description of where the ocean ends: a land-sea model.
Many ocean-tide models do not show this in much detail, so a supplementary
representation is needed.

C. A set of Green functions, for a specified SNREIO model and set of observables.
D. Some software to combine all of these to compute (4.4) to adequate accuracy.

We consider each of these in turn.

4.2. Ocean and Land-Sea Models

Modeling ocean tides is an ancient subject, and a difficult one (Cartwright
1999). The intractability of the relevant equations (themselves put forward by
Laplace in 1776) and the inability to measure tides in deep water meant that for a
very long time there were no good tidal models for computing loads. From the
Earth-tide standpoint what is important is that increasing computational power has
finally rendered numerical solutions possible for realistic (complicated) geometries,
and that satellite altimetry has provided a wealth of data with global coverage. For
computing load tides, the ocean models are generally as good as they need to be.
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Perhaps the biggest difficulty in modeling the tides is the need to represent the
bathymetry in adequate detail (it is usually known adequately). The need to do this,
and the relatively coarse spacing of the altimetry data, has meant that tidal models
still divide into two groups: global and local. Global models often cannot adequately
model the resonances that occur in some bodies of water (such as the Bay of Fundy),
so local models must be used. Global models are computed on a relatively coarse
mesh (say 0.5°), and rely heavily on altimetry data (e.g., Egbert and Erofeeva 2002).
Local models use a finer mesh, and often rely on local tide-gauge data. Obviously, a
local model is not important for computing loads unless you are close to the area it
covers, but if you are it may be very important.

Most tidal models are given for particular tidal constituents, usually at least
one diurnal and one semidiurnal. Unless a local resonance is present, the loads for
other constituents can be found by scaling using the ratios of the amplitudes in the
equilibrium tide. (Le Prevost et al. 1991).

About land-sea models, little need be said: this problem has essentially been
solved by the global coastal representations made available by Wessel and Smith
(1996)—though these are not devoid of error, they will be adequate unless the sta-
tion is very close to the shore, and the local tides are large. The only exception is in
the Antarctic, where their coastline is (in places) the ice shelves, beneath which the
tides are still present. The SPOTL software uses an improved coastline representa-
tion there.

4.3. Green Functions

The basic reference for tidal loading Green functions, and their computations,
remains Farrell (1972); I give only a short sketch here. The Green functions are usu-
ally found as sums of load Love numbers, times the appropriate angular functions.
For example, the Green function for vertical displacement is

G.)=5 W, P,(cosD)
n=0

where the P,’s are the Legendre polynomials.

0

\ >

C
Figure 4.1

A few Green functions can be computed directly, notably the function for “New-
tonian” (rigid-Earth or direct-attraction) gravity; finding this will illustrate some
properties of such functions. The acceleration per unit mass is G/x? directed along
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the line OL as shown in Figure 4.1; O is the place of observation, L of the load, and x
the chord distance between them. The amount of acceleration directed along OC
(the local vertical, to a good approximation) is
Gcos
22

But a cos A+ x cos 5§ = a, where a is the radius of the Earth, OC, so

al —cosh)
X

coso =

and also x? = 2a%(1 - cos D), so (11) becomes

Gceoss _ Ga(l—cosh)
x?  2V2a? (1-cosA) 372

B G _ G _ g
922V —cosp) 4a2sinA/2  4MpsinA/2

(4,6)

where M, is the mass of the Earth.

Note that this function has a singularity, of order A, as A becomes small.
Some kind of singularity at the origin is the general case, and shows that local loads
are more important that distant ones: which is why local tidal models, and good rep-
resentations of the shore, can be important. In reality, the response to gravity is not
singular, in this case because of the effect of elevation above or below sea level
(where the changes in mass occur).

The quantities for which Green functions are usually computed are displace-
ment (vertical and horizontal), gravity, tilt, strain, and the tide-raising potential (a
combination of potential change and vertical displacement). The Green function for
linear strain, for example, is given by

LG (A G0
GL(D, 6) = G (D) cos? 6 + [@ + cotA ﬁ[{siﬁ
o ¢ ¢ o
where 6 is the azimuth of the load relative to the direction of extension, and G,, G,,
and G, are the Green functions for strain in the direction of the load, and vertical
and horizontal (toward the load) displacement.

0 (4.7)

For small distances, the Green functions for displacement, gravity, and the
potential vary as A, and tilt and most kinds of strain as A™2. Areal strain has a
complicated dependence on distance, because it in fact is zero for a point load on a
halfspace, except right at the load. The singularity in strain again is removed in
practice by any depth of burial. The higher order of singularity for tilt and strain
means that the computed ocean load, especially near a coast, can be dominated by
local tides.

Green functions were computed by Farrell for three earth models: one average,
one with a continental structure, and one with an oceanic structure. The differences
were not large. Later authors (e.g., Jentzsch 1997) have computed these functions
for more modern models (eg PREM), and also for other depths than at the surface (to
look at tidal triggering). Examination of the extent to which local structure,
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particularly lateral variations, affect computed load tides, have not be plentiful—
perhaps mostly because the data most sensitive to such effects, strain and tilt, are
affected by other local distortions.

4.4. Computational Methods

Essentially all load programs perform the convolution (4.4) directly, either over
the grid of ocean cells (perhaps subdivided near the load) or over a radial grid. Bos
and Baker (2005) have recently compared the results from four programs, albeit only
for gravity, which is least sensitive to local loads. The programs included SPOTL
and GOTIC, the only two that compute strain loads. They find variations of a few
percent because of different computational assumptions.

Figure 4.2

4.5. An Example

To show how this works in practice, we consider the PBO borehole strainmeter
(and GPS site) HOKO, on the Olympic Peninsula in Washington. We first show a set
of maps (Figure 4.2) in which areas are deliberately distorted so that regions of
equal area on the map would contribute equally to the measurement if the loads on
them were the same (Agnew 2001). Such a map immediately shows which regions of
loading are unimportant, and which are possibly significant, though of course the
actual significance of any area depends on there actually being a load there. The
map is thus how a measurement at some place “views” the world of loads, Figure 4.2
shows such maps for vertical displacement (important for GPS), areal strain, and NS
strain. The first two are both independent of azimuth; the last is insensitive to loads
at 45° to the NS axis, producing a 4-lobed pattern. For the displacement, the North
Pacific occupies most of the area on the map. For the strain, the greater localization
of the Green function is shown by the much greater prominence of the Strait of Juan
de Fuca. Accurate calculation of these loads thus demands good local tide models,
an accurate depiction of the coastline, and Green functions that represent the local
structure. While detailed local models for many of the of the world’s coasts do not
yet exist, this is not true here.

Figure 4.3 shows what the actual computation produces, in the standard form
of a phasor plot (phase lags negative, and relative to the local potential). The Green
function is Farrell’s for the Gutenberg-Bullen average model. In each frame, the
first arrow is the My tide expected on a SNREIO Earth: large for the NS extension,
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very small for the EW, and in quadrature (90° phase) for the shear. The loads mod-
ify this signal very substantially, greatly increasing the amplitude of the EW but not
much changing the phase (not true in general), and changing the amplitude and
phase of the shear. The local tides in the Strait of Juan de Fuca are important but
not dominant; what probably dominates are the Pacific Ocean tides nearby, which
are fairly well known. Using a continental structure changes the EW tide by about
10%. Clearly, getting the loads right, at this site, will be important, but not
extremely difficult.

5. Tidal Analysis and Prediction

We close our discussion of tides with the analysis of time series for tidal
response, and the prediction of future tides from such an analysis. To start with, we
note that what we are really are trying to determine is the response of some system
to the tidal forcing. The relevant concept is therefore that of the admittance of a lin-
ear system, first introduced into tidal analysis by Munk and Cartwright (1966). We
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suppose that our data y(¢) can be represented as, for example,
y(t) = J’ xp(t —7)hp(r)dr + J' xg(t —7)hp(r)dr + n(t) 4.1)

Here the x(¢)’s are input series: xp is a theoretical tide, and x5 is (say) the local air
pressure; there might be more series for other environmental variables as well. The
function n(¢) is the noise—which in this representation simply means “anything not
correlated with the input series”; it may include, along with instrument drift, and
short-term noise, such things as tectonic changes (which are noise if you are inter-
ested in tides).

The functions A(#) then give the impulse response of the system to the various
inputs. If we take the Fourier transform of both sides of (4.1), and disregard the
noise, we find that Y(f)=Hp(f) Xp(f)+ Hg(f) X5(f). The H(f)s are admit-
tances, the Fourier transforms of the A’s—and it is, almost always, more informa-
tive to examine these frequency-domain functions than their time-domain counter-
parts. If x7(¢) is the tidal potential, it may be computed from known astronomy to a
level that we may regard as exact. Because the tides are very band-limited we can
find the tidal admittance, Hr(f), only for frequencies at which X p(f) contains sig-
nifi cant energy—so it is not really feasible to determine A(¢). In studying ocean tides
it is most meaningful to take x7(¢) to be the local value of the tide-raising potential.
In earth tide studies it may be more convenient to take as reference the tides
expected for a SNREIO earth model, so that any departure of H(f) from unity will
then refkct the effect of ocean loads or the inadequacy of the model.

5.1. The Credo of Smoothness

Thinking about the tides in terms of the admittance leads to an important
insight that is implicit in some methods of tidal analysis and explicit in others. This
is that the admittance is a smoothly-varying function of frequency, so that, over each
of the tidal bands A(f) does not vary a great deal—and, the more closely spaced two
frequencies are, the closer the corresponding values of A(f) will be. This assumes
that neither the ocean nor the Earth have resonant responses in the tidal bands, at
least not sharp ones, which is to say ones with a very high @. Munk and Cartwright
(1966) dubbed this assumption “the credo of smoothness”.

This assumption appears to be valid and useful for the response of the ocean:
even though there are many modes of oscillation with frequencies in the tidal bands,
most of them have such low @’s as to be undetectable. Even the local resonances in
certain bays and gulfs have a low enough @ that the response is smoothly-varying
over (say) the complete semidiurnal band. The one place where this assumption
breaks down is in the Free Core Nutation resonance in the Love numbers (Section
3.0 above), though this is small enough to (usually) be ignored in tidal analysis
schemes.

5.2. Tidal Phase Conventions

A frequent source of confusion in using the results of a tidal analysis is what
the phases mean. First of all, there is a sign issue; namely which sign of phase rep-
resents a lag (or lead). At bottom this comes down to what our Fourier transform
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convention is, or, put another way, what we use to represent a complex sinusoid. If
this is €279 then for ¢ =0, the maximum will occur at ¢ =0. If ¢ is (slightly)
greater than 0, the maximum will be at ¢ < 0, and the function will be advanced (we
reach the maximum sooner in time) relative to ¢ =0; similarly for ¢ < 0, we reach the
maximum later (a delay). Thus, ¢ <0 is a phase lag, and ¢ >0 a phase lead. This
corresponds to using e 2" as the kernel in the definition of the Fourier transform.
This is the choice used in electrical engineering (and hence in signal processing), and
becoming increasingly common. However, much of the tidal literature refkcts the
more common convention of the nineteenth century, which is to make phase lags pos-
itive.

This is a problem for any Fourier results; one peculiar to tidal analysis is, what
do we refer the phases to? Otherwise put, when is the phase zero? There are two
common choices:

1. The local phase, in which the phase is taken to be zero (for each constituent)
at a time at which the potential would be a maximum, locally. This is a conve-
nient choice for the analysis of Earth tides because on a SNREIO Earth the
phase is zero for most tides (e.g., gravity, NS tilt, vertical displacement, areal
strain). For ocean tides this phase is usually denoted as «, though note that in
this field that variable refers to positive phases for lags. For strain in an arbi-
trary direction, the local phase varies in a more complicated way. We can of
course choose the reference to be when the phase of the corresponding theoreti-
cal tide (e.g., linear strain in the same direction on an SNREIO Earth) is zero,
though this is not a standard choice.

2. The Greenwich phase, in which the phase is taken to be zero (for each con-
stituent) at a time at which the potential would be a maximum at 0° longitude.
The purpose to this is that, if given for a number of places, it provides a “snap-
shot” of the distribution of the tidal amplitude and phase at a particular
instant. This phase, usually termed G, is therefore the norm in ocean-tide
studies;’ again usually with lags positive.

The relationship between x and G is simple, and depends only on the tidal
species number m and the longitude L since the time between maximum at Green-
wich and maximum at a local place depends only on the spherical harmonic order
(and the Earth rotating 360° every 24 hours): the frequency of the constituent is not
involved. The relationship is usually written as

G=x-mL

Note however, that this not only assumes phase lags to be positive, but West longi-
tudes to be positive as well: an old convention of diminishing popularity. If we use
primes on G and « to denote lags negative, and take East longitudes (1) to be posi-
tive (now the more common choice), we get what looks like the same rule:

G =«x'"-mai (4.2)
It is obviously very important, when using or giving the results of a tidal analysis, to

7 Not completely true; many collections of tidal constants use another phase, g,
which is the phase corrected to local time—as makes sense if you want to predict tides
for a particular port.

© 2005 D. C. Agnew



July 2005 Earth Tides 28

be explicit about the phase conventions being used.

5.3. Preprocessing Data for Tidal Analysis

All tidal analysis is an attempt to extract information from a few relatively
narrow frequency bands. An ideal series for tidal analysis would be one with no
noise at all; and while this is not possible, it is useful to try to make it as good an
approximation as can be done. In particular, if there is considerably more energy
present in the series at frequencies away from the tides, than at frequencies nearby,
it is a good idea to remove this energy before performing the analysis. Many series
that contain tidal data, and borehole strainmeter data most of all, have much more
energy at low frequencies (in the form of drift) than in the tidal bands. Because the
only goal for tidal preprocessing is to remove energy in some frequency bands, this
drift can be most easily removed by convolving the series with an appropriate high-
pass filter. If a zero-phase-shift FIR filter is used, the only correction then needed is
(perhaps) for the tidal amplitudes to be modified for the filter response, though it is
not difficult to design filters with negligible departure from unity gain in the pass-
band.

5.4. Spectral and Cross-Spectral Methods

The most naive approach to finding the tidal response is to simply take the
Fourier transform of the data, and look at the amplitudes and phases of the result.
That is, given N data values y,, we compute the Discrete Fourier Transform (DFT)
coefficients

N-1 .
Yp= 3 y,e?™*N E=0,..N-1 (4.3)
n=0
and use their amplitudes and phases to get the amplitudes and phases of the tides.
This is a really bad choice, made even worse if the length of the transform, N is
made to be a power of 2 to utilize a Fast Fourier Transform algorithm. There are (at
least) two problems with this:

A. The frequencies corresponding to the indices k2 for the DFT coefficients are
fr = kR/NAt, where At is the sample interval. These may or may not coincide
with the frequencies of the tidal constituents—and usually they do not.

B. The amplitudes of the coefficients will be biased to values higher than the true
values because of the presence of noise, the limiting case being that 1Y, will
have some positive value even if there is no tidal signal at all.

A much better method, still based on spectral techniques, is the cross-spectral
technique described by Munk and Cartwright (1966). While this method has lower
frequency resolution than some others, it makes the fewest assumptions about the
data being analyzed, and in particular about the form of H(f). Another advantage is
that it allows the noise to be determined as a function of frequency, whereas most
methods assume it to be the same at all frequencies. This may not be true for strain
data. As the method was described in full by Munk and Cartwright I give only a
brief summary.
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The procedure is to compare the data series y with a computed series of theo-
retical tides x, which is of course noise-free.® Then divide each series into M sections
of length N, and compute an array of DFT coefficients for each series:

N-1 .
le = Z Wn Xn+j(m) e—27nln/N (443.)
n=0
g ~27iln/N
Yim=2 W, Yijme ™" (4.4b)
n=0

where j(m) is the starting term of the m-th section. If there are no gaps to skip over,
jim) =(m —1)r, where r is the offset between successive sections. The value of M
will of course depend on r, on the total length of the series, N, and on the distribu-
tion of gaps. The sequence W, is termed a window, or data taper, used on the
data before Fourier transforming; it serves to minimize bias of small signals by large
ones nearby in frequency.

In order to compute cross-spectral estimates, we must average the Fourier
transforms—if we just take a single pair of DFT coefficients, we will get a badly
biased answer. Two ways of proceeding, which may be combined, are averaging over
sections and averaging over frequency. (The reason for frequency averaging rather
than using shorter sections is that certain section lengths minimize the sidebands
from the tidal lines.) Suppose we are interested in the cross-spectrum at a frequency
bin /;, where [y < [; < ly+ L-1. Denote the summation process by

lytL-1 M

SlZ1= 2 % Zn

I=l, m=1

The estimated admittance is then

5 _ SIX'Y]
" SIXX] 5
The input and output power spectral densities are
R XXl 4 Y'Y
= S[ ] )= S 1 (4.6)
LMN LMN
where Ny is the normalizing factor for the window W:
N-1
Ny=3 W,
n=0
The estimated coherence between the series is
%[Re(X*Y)]g ¥ E%[Im(X*Y)]g
2 4.7

y= SIX* X1S[Y"Y]

8 This can be computed from the methods described in Section 2 and Section 3,
either to compute the potential or to compute a theoretical tide on a SNREIO Earth.
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Munk and Cartwright (1966) show that the coherence estimated from a finite record
will be biased high; an approximately unbiased estimate of the coherence is

}/2 - pr-1

= 4.8)

Here p depends on the amount of averaging; if the estimates from each segment are
independent it is ML. The number of degrees of freedom (in the statistical sense) is
2p. The admittance estimate H is complex; Munk and Cartwright give the proba-
bility distribution for the amplitude and phase of H. If the signal-to-noise ratio is
high, both are distributed nearly normally with variance

-2 A 2
o_ v -1 _1-7y
= = 4.9
o 2p 2p (4.9)

for p“y? > 1. Finally, the noise power is given by

Py =Py1-7% (4.10)

A reasonable procedure is to first lowpass and decimate the data to a 3 hour
interval. Putting N =1093 then gives a record length of almost exactly 132 lunar
days or 4 lunar months, which ensures that the tidal groups all fall close to integral
frequencies of the digital Fourier transform. Application of a Hanning window to
the data ensures that the tidal energy in each group is confined to only three fre-
quencies. Averaging over these when computing the cross-spectrum gives a final fre-
quency resolution of 1 cycle per month. If the data sections are overlapped by 50
percent, the appropriate value for p was 1.4LT/N, where T is the total length of the
series (Haubrich 1965).

The program ti dspc implements this analysis procedure, using a slow Fourier
transform algorithm to compute the (relatively few) DFT coefficients needed, with-
out the length restrictions of an FFT. This takes care of objection (A) above; objec-
tion (B) is removed by the averaging and use of cross-spectral estimation. Again,
this method makes few assumptions and provides estimates of the noise spectrum; it
does however require large amounts of data (at least a few years) to perform reliably.

5.5. Least-squares Fitting

By far the most common approach to tidal analysis, is least-squares fitting of a
set of sinusoids with known frequencies—ehosen, of course, to match the frequencies
of the largest tidal constituents. It is easy to set this up; we aim to minimize the
sum of squares of residuals r,, formed by

yo Lp . i
> n— 2 dé\; cos2rxfit,) + B;sin2xf;t,) (4.11)
n=0] =1 I:%

which expresses the fitting of L sine-cosine pairs with frequencies f; to the data, the
f’s being fixed and the A’s and B’s being solved for.’

9 Fitting for amplitudes and phases, being a nonlinear problem, should never be
done.
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The mathematics for solving such a problem are quite standard, though the
usual assumption for the noise (that it is independent for each sample) is probably
not valid in this case. One minor point about the least-squares solution is that it can
be solved using the normal-equations version of the associated matrix problem.
Because of numerical instabilities in forming the normal equations, least-squares
problems are usually better solved using other matrix methods such as singular
value decomposition; in this case the normal equations involve sums of sines and
cosines, and these can be found analytically.

The problem with using (4.11) for tidal analysis comes from the fine-scale fre-
quency structure of the tidal forcing function, particularly the nodal modulations.
Leaving such variations out of (4.11), and only solving for a few large constituents,
will in general be quite inaccurate. But the simplest way of including nodal and
other modulations, namely through including the satellite constituents in (4.11), will
not work because (unless we have 19 years of data) we will be trying to solve for the
amplitudes of constituents separated by frequency by less than 1/T, where T is the
record length: and this cannot be done reliably.!’ This is a problem for other tides if
we have only a short span of data: for example, with only a month of data, we cannot
get reliable results for the P; and K; lines, since they are separated by only 0.15
cycles/month.

All least-squares analysis procedures thus have to include an assumption
about nearby tidal constituents, which is to say an implicit assumption about the
admittance. The usual one is to take the admittance to be constant over widths 1/7
around the main constituents, summing all constituents within each such group to
form (slowly varying) sinusoidal functions to replace the sines and cosines of (4.11).
This is, for example, the procedure in BAYTAP. Of course, if we then wish to assign
the resulting amplitude to a particular constituent (say M,) we need to correct the
amplitudes solved for by the ratio of this sinusoidal function to the single con-
stituent. All this adds complexity; while it has been taken care of in existing analy-
sis programs, it would need to be implemented in any new one.

5.6. The Response Method

One way of avoiding these complications, and perhaps the most sophisticated
approach to tidal analysis, is the response method introduced by Munk and
Cartwright (1966). This makes no use at all of the harmonic expansion of the tidal
potential, but rather treats this as a time series to be fit to the data, using a set of
weights to express the admittance. Except for Lambert (1974) it has not been much
applied to Earth tide analysis, in large part (in my view) because of an overly-conser-
vative attachment to being able to give amplitudes of coefficients. It also has not
seen much use in the analysis of ocean-tide data, with the very notable exception of
the estimation of tides from satellite altimetry, where it is standard.

The basic approach is a weighted sum over the time variations by spherical
harmonic (not harmonics in time):

10 This limit is known as Rayleigh’s criterion. It actually depends (somewhat) on
the signal to noise level.
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0 n Ly,
y®) =2 2 2 wila(t-1ID) +iby(t - 1D)] (4.12)

n=2m=-n |=-L,..
where the a;'(¢) and b}'(¢) are the time-varying functions that sum to give the poten-
tial in (2.11). The (complex) weights w};, called response weights, give the tidal
response; to get this as a function of frequency we would take the Fourier transform
of the series of weights. Taking one weight for each n and m (that is, setting
L,,, =0) amounts to assuming a constant admittance for each degree and order.
Note that because even one weight would be complex, it can express both amplitude
and phase response. Including more weights, with lags, allows the admittance to
vary with frequency, smoothly, across each tidal band. The lag interval is usually
chosen to be 2 days, which makes the admittance smooth over frequencies of greater
than 0.5 cpd; note that the lags can include the potential at future times because the
admittance is being fit over only a narrow frequency band.

5.7. Predicting Tides

All tidal predictions, other than those based on the response method, use a har-
monic expansion similar to equation (2.13):

K
x(t)= 3 A, cos %ﬁfk(t ~ to) + ¢2(t) + 6,1 (4.13)
k=1 O

where the A,’s and ¢,’s are amplitudes and phases (the harmonic constants) for
whatever is being predicted. The f}’s are the frequencies of the different con-
stituents, and the ¢2’s are the phases of these at a reference time ¢.

This much is straightforward; the complications come from the various long-
term modulations of the tides, as for example the nodal modulations discussed in
Section 2.5 In classical prediction methods, these are applied to adjust the various
A;’s and ¢;’s so as to produce gradually changing values, after which a sum was
done over a relatively small number of constituents.!! This works perfectly well, but
adds complexity, especially if the predictions are to be made over a long time, during
which these adjustments will change.

There is a conceptually simpler approach, though since it is more computation-
ally intensive, it was not usable until modern computers were available. This is to
simply use a large number of constituents in a sum of the form (4.13) with satellite
constituents being included to produce the nodal and other modulations. The prob-
lem then is to infer the amplitudes and phases of these, since they usually cannot be
analyzed for. The method (implicit in the classical method as well) is to rely on the
smoothness of the tidal admittance, and use this to find the amplitudes and phases
of many constituents from those few that are available. This procedure is imple-
mented in the program harti d, using a spline interpolation of the real and imagi-
nary parts of the admittance, which is itself deduced by taking the ratio of con-
stituent amplitudes to those amplitudes for the equilibrium potential, using the

1 Another of Thomson’s contributions to tidal methods was the mechanical tide
prediction machine, which used geared cranks to produce the sinusoids and a long belt

connecting them to make the sums. These analog systems were in fact faster than the
early digital computers, and were not replaced by them until the 1960’s.
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values for the CTED expansion. (See Le Prevost et al. 1991, for a description,
though harti d was developed independently of this work).
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