
resolution:
(I. 4 meter)
/
(7 pixels)
$\sim 0.2 \mathrm{~m} /$ pixel
$\sim 0.2 \mathrm{~m} / \mathrm{pixel}$
resolution
$\sim 0.002 \mathrm{~m} / \mathrm{pixel}$

Synthetic Aperture Radar (SAR) focussing

Synthetic Aperture = a bigger (virtual) antenna \rightarrow finer resolution

resolution

(spatial) resolution: width (in meters) of smallest object that a sensor can distinguish
(image) resolution:"Basically, resolution quantifies how close lines can be to each other and still be visibly resolved."
http://en.wikipedia.org/wiki/lmage resolution
"fine" versus "coarse" resolution

Correct

https://www.appliedimage.com/products/sine-patterns-and-square-wave-targets
passive and active remote sensing - optical and microwave

RADAR = RAdio Detection And Ranging

Active sensor

All weather

Night or day
Like sonar:
first echo is from nearest object

geometric coordinates

radar

geographic

$r_{\text {ange }}$

Radar Coordinates

Ground Range Rg:

projection of line of sight onto ground)

Azimuth Xg :
parallel to satellite velocity vector

East

Radar phase measures distance

Radar amplitude measures reflectivity (backscatter intensity)

INSAR helps spot the differences

Map of phase shift shows fringes

Map of phase shift shows fringes

1 fringe $=\lambda / 2$

$=28 \mathrm{~mm}$ change in range

$\mathrm{b}=$ phase $\left(\mathrm{t}_{2}\right)$

들 40
a fringe is a contour line of displacement projected onto the satellite's "line of sight"

INSAR geometry

Range Change

$$
\begin{gathered}
\Delta \rho=\frac{\lambda}{2}\left[\phi\left(t_{2}\right)-\phi\left(t_{1}\right)\right] \\
\Delta \rho=-\mathbf{u} \bullet \hat{\mathbf{s}}
\end{gathered}
$$

- First image at t_{1}
- Second image at t_{2}
- Phase shift => range change
- Component of ground displacement along radar line of sight s
- Increasing range $\Delta \rho$ away from satellite
- Range is most sensitive to vertical component of displacement
- Motion parallel to ground track of satellite does not change range

Lucky at Landers => Lessons Learned

«La chance ne sourit qu'aux esprits bien préparés. »
"In the fields of observation, chance favors only the prepared mind."

Louis Pasteur
l'Université de Lille(1854)

- Known signal with ground truth
- Large earthquake in arid area
- Near download station
- Software
- International cooperation
- Big picture
- People
- Peer review

Applying GIPhT to the Fawnskin aftershock

LETTERS TO NATURE

GEOPHYSICAL RESEARCH LETTERS, VOL. 22, NO. 9, PAGES 1037-1040, MAY 1, 1995

Estimation of an earthquake focal mechanism from a satellite radar interferogram: Application to the December 4, 1992 Landers aftershock
Kurt L. Feigl, Arnaud Sergent, and Dominique Jacq
Centre National de la Recherche Scientifique, Toulouse, France

Geophys. J Int. (2009) 176, 491-504
doi: 10.1111/j.1365-246X.2008.03881.x

A method for modelling radar interferograms without phase unwrapping: application to the M 5 Fawnskin, California earthquake of 1992 December 4

[^0]
Observed Phase Values

Modeled Phase Values

Residual Phase values

Magmatic Inflation and Potential Caldera Inception in the Andean Cordillera:
 Laguna del Maule, Chile

InSAR maps spanning the 1058-day time interval from 2007 Feb. 12 through 2010 Jan. 05.

a. observed phase values;
b. modeled phase values calculated from the final estimate of the parameters in the Okada dislocation model;
c. final residual phase values
formed by subtracting final modeled
values from observed phase values;
d. angular deviations for final estimate.
One cycle of phase denotes 112 mm of range change.

The ALOS orbit numbers are 5602 and 21035.
The altitude of ambiguity is -72.6 m .
Feigl, K. L., H. Le Mével, S. Tabrez Ali, L. Córdova, N. L. Andersen, C. DeMets, and B. S. Singer (2014), Rapid uplift in Laguna del Maule volcanic field of the Andean
Southern Volcanic zone (Chile) 2007-2012, Geophys. J. Int., 196, 885-901.
http://dx.doi.org/10.1093/gji/ggt438

G41B-04: Geodetic measurements and numerical models of deformation at the Svartsengi Geothermal Field, Iceland, 1992 - 2010 [AGU 2012]

Kurt Feigl

Tabrez Ali

Herb Wang

Guðmundur
Ómar Friðleifsson

Ómar
Sigurðsson

Freysteinn
Sigmundsson

WISCONSIN

HS ORKA HF

with data from
ESA, DLR \& JAXA

Masters, A. E. (2011), Interferometric synthetic aperture radar analysis and elastic modeling of deformation at the Svartsengi geothermal field in Iceland, 1992 to 2010: feasibility of a reverse impulse-response evaluation of reservoir pressure from low Earth orbit, M.S. (Geophysics) thesis, University of Wisconsin, Madison.

Svartsengi from 1992.5 to $1993.4 \Delta \mathrm{t}=0.8616 \mathrm{yr}(1$ fringe $=1$ cycle $=28 \mathrm{~mm})$

Time-Dependent Deformation at Brady Hot Springs Geothermal Field (Nevada) Measured With Interferometric Synthetic Aperture Radar and Modeled with Multiple Working Hypotheses of Coupled Behavior (\#T13E-02)

Kurt L. Feigl ${ }^{1}$ S. Tabrez Ali ${ }^{1}$ John Akerly ${ }^{4}$ E. C. Baluyut ${ }^{1}$ Michael Cardiff ${ }^{1}$ Dante Fratta ${ }^{1}$ William Foxall ${ }^{2}$ Corné Kreemer ${ }^{5}$ Robert J. Mellors ${ }^{3}$ Christina Morency ${ }^{3}$ Janice Lopeman ${ }^{4}$ Paul Spielman ${ }^{4}$ Herbert F. Wang ${ }^{1}$

1. U. Wisconsin-Madison
2. Berkeley N.L.
3. Livermore N.L.
4. Ormat Technologies, Inc.
5. U. Nevada-Reno
6. Silixa Ltd.
7. Temple U.

Ali, S. T., J. Akerley, E. C. Baluyut, M. Cardiff, N. C. Davatzes, K. L. Feigl, W. Foxall, D. Fratta, R. J. Mellors, P. Spielman, H. F. Wang, and E. Zemach (2016), Time-series analysis of surface deformation at Brady Hot Springs geothermal field (Nevada) using interferometric synthetic aperture radar, Geothermics, 61, 114-120. http://dx.doi.org/10.1016/j.geothermics.2016.01.008

Sponsors: DOE:	InSAR \& MEQ (Nicholas Davatzes et al.)	DE-EE0005510
	PoroTomo (Kurt Feigl et al.)	DE-EE0006760
NASA:	NISAR Science Definition Team (Kurt Feigl)	NNX12AO37G
SAR data:	DLR:	TerraSAR-X and TanDEM-X
JAXA:	ALOS	RES1236
ESA:	ERS \& ENVISAT	NASA DAAC at ASF

Subsidence in 2 bowls: dimension $\sim 1 \mathrm{~km}$ near injection wells near production wells not centered on wells

range

 change rate
2011

 to 2015

Ali et al. (Geothermics,. 2016)
Range change rate (mm/year)

rate of volume change estimated from InSAR

Modeled cumulative volume change

Ali et al. (Geothermics,. 2016)

Okmok Volcano, Alaska

Eruption of Okmok, photo taken Sunday, July 13, 2008 by Kelly Reeves [Alaska Airlines]

2 Eruptions in 2010 at Eyjafjallajökull in Iceland: basalt on flank (20 March - 12 April) trachyandesite at summit (14 April-22 May) Literally means "the glacier of the island mountains"

Eyja [island] fjalla [mountains] jökull [glacier] Kurt Feigl and Peter Sobol installed 3 UW broadband seismometers for ambient noise tomography

nature

the international weekly journal of science

UNDER THE SOLCANO

Signs of volcanic unrest before the eruption

ClMate Sclence
IN THE EYE
OF A STORM
Phil Jones reflects on those
e-mails a year on PAGE 362

CRUNCH TIME FOR WIMPS
Experiments should flush out dark-matter particles PaGE 389

Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption

F Sigmundsson et al. Nature 468, 426-430 (2010)

The cover photo shows the base of the ash plume in the main crater on 11 May 2010, with hot 'bombs' of lava being ejected hundreds of metres into the air. Credit: Fredrik Holm (www.fredrikholm.se)

RESEARCH LETTER

Full Methods and any associated references are available in the online version of fue paper at www.nature.com/nature.

Received 14 May; accepted 5 October 2010.

Models of intrusions, sills, and dikes

Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption

InSAR

TerraSAR-X

$15.5 \mathrm{~mm} /$ fringe

GPS

N (quakes)

Freysteinn Sigmundsson, Sigrún Hreinsdóttir, Andy Hooper, Thóra Árnadóttir, Rikke Pedersen, Matthew J. Roberts, Níels Óskarsson, Amandine Auriac, Judicael Decriem, Páll Einarsson, Halldór Geirsson, Martin Hensch, Benedikt G. Ófeigsson, Erik Sturkell, Hjörleifur Sveinbjörnsson, Kurt L. Feigl

Nature, revised 2010-09-08

[^0]: Kurt L. Feigl and Clifford H. Thurber
 Deparment of Geology and Geoplysics. University of Wisconsin-Madison, 1215 West Dayton Street, Madison, WI 53706, USA. E-mail: feigl@wisc.edu

