

resolution: (I.4 meter) / (7 pixels)

~ 0.2 m/pixel

~ 0.2 m/pixel resolution ~ 0.002 m/pixel

Synthetic Aperture Radar (SAR) focussing

Synthetic Aperture = a bigger (virtual) antenna → finer resolution

resolution

(spatial) resolution: width (in meters) of smallest object that a sensor can distinguish

(image) resolution: "Basically, resolution quantifies how close lines can be to each other and still be visibly resolved." <u>http://en.wikipedia.org/wiki/Image_resolution</u>

"fine" versus "coarse" resolution

Correct

https://www.appliedimage.com/products/sinepatterns-and-square-wave-targets

passive and active remote sensing – optical and microwave

RADAR = RAdio Detection And Ranging

Active sensor

All weather

Night or day

Like sonar:

first echo is from nearest object

geometric coordinates

Radar Coordinates

- Ground Range Rg:
- projection of line of sight onto ground)
- Azimuth Xg:
- parallel to satellite velocity vector

Radar phase measures distance Radar amplitude measures reflectivity (backscatter intensity)

INSAR helps spot the differences

Map of phase shift shows fringes

15

Map of phase shift shows fringes

1 fringe = $\lambda/2$

Vorthing (km)

= 28 mm change in range

0.4

0.2

0

b = phase(t_o)

profile at Northing = 55 km 0.4 0.4 0.2 0.2 phase (cycles) 0 0 -0.2 -0.2 -0.4 -0.4 20 40 60 80 100 Easting (km)

INSAR geometry

Range Change
$$\Delta \rho = \frac{\lambda}{2} \left[\phi(t_2) - \phi(t_1) \right]$$
$$\Delta \rho = -\mathbf{u} \cdot \hat{\mathbf{s}}$$

- First image at t₁
- Second image at t₂
- Phase shift => range change
- Component of ground displacement along radar line of sight s
- Increasing range $\Delta \rho$ away from satellite
- Range is most sensitive to vertical component of displacement
- Motion parallel to ground track of satellite does not change range

Lucky at Landers => Lessons Learned

« La chance ne sourit qu'aux esprits bien préparés. »

"In the fields of observation, chance favors only the prepared mind."

Louis Pasteur l'Université de Lille(1854)

- Known signal with ground truth
- Large earthquake in arid area
- Near download station
- Software
- International cooperation
- Big picture
- People
- Peer review

Sniffing out transcription factors Tropical cradle for biodiversity Seismological detection of a

mantle plume?

Image of an

earthquake

ERNATIONAL WEEKLY JOURNAL

Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute (1993), The displacement field of the Landers earthquake mapped by radar interferometry, *Nature*, *364*, 138-142. <u>http://dx.doi.org/10.1038/364138a0</u>

Kurt Feigl 18

Applying GIPhT to the Fawnskin aftershock

LETTERS TO NATURE

GEOPHYSICAL RESEARCH LETTERS, VOL. 22, NO. 9, PAGES 1037-1040, MAY 1, 1995

Estimation of an earthquake focal mechanism from a satellite radar interferogram: Application to the December 4, 1992 Landers aftershock

Kurt L. Feigl, Arnaud Sergent, and Dominique Jacq Centre National de la Recherche Scientifique, Toulouse, France

Geophys. J. Int. (2009) 176, 491-504

doi: 10.1111/j.1365-246X.2008.03881.x

A method for modelling radar interferograms without phase unwrapping: application to the M 5 Fawnskin, California earthquake of 1992 December 4

Kurt L. Feigl and Clifford H. Thurber

Department of Geology and Geophysics, University of Wisconsin-Madison, 1215 West Dayton Street, Madison, WI 53706, USA. E-mail: feigl@wisc.edu

Observed Phase Values

Modeled Phase Values

Angular deviations

Magmatic Inflation and Potential Caldera Inception in the Andean Cordillera: Laguna del Maule, Chile

InSAR maps spanning the 1058-day time interval from 2007 Feb. 12 through 2010 Jan. 05.

a. observed phase values;
b. modeled phase values calculated
from the final estimate of the
parameters in the Okada dislocation
model;

c. final residual phase values
formed by subtracting final modeled
values from observed phase values;
d. angular deviations for final
estimate.

One cycle of phase denotes 112 mm of range change.

The ALOS orbit numbers are 5602 and 21035. The altitude of ambiguity is –72.6 m.

Feigl, K. L., H. Le Mével, S. Tabrez Ali, L. Córdova, N. L. Andersen, C. DeMets, and B. S. Singer (2014), Rapid uplift in Laguna del Maule volcanic field of the Andean Southern Volcanic zone (Chile) 2007–2012, *Geophys. J. Int., 196*, 885-901.

http://dx.doi.org/10.1093/gji/ggt438

G41B-04: Geodetic measurements and numerical models of deformation at the Svartsengi Geothermal Field, Iceland, 1992 – 2010 [AGU 2012]

Kurt Feigl

Tabrez Ali

Herb Wang

Guðmundur Ómar Friðleifsson

Ómar Sigurðsson

Freysteinn Sigmundsson

with data from ESA, DLR & JAXA

Masters, A. E. (2011), Interferometric synthetic aperture radar analysis and elastic modeling of deformation at the Svartsengi geothermal field in Iceland, 1992 to 2010: feasibility of a reverse impulse-response evaluation of reservoir pressure from Iow Earth orbit, M.S. (Geophysics) thesis, University of Wisconsin, Madison.

Svartsengi from 1992.5 to 1993.4 $\Delta t = 0.8616$ yr (1 fringe = 1 cycle = 28 mm)

Masters, A. E. (2011), M.S. (Geophysics) thesis, University of Wisconsin, Madison.

Time-Dependent Deformation at Brady Hot Springs Geothermal Field (Nevada) Measured With Interferometric Synthetic Aperture Radar and Modeled with Multiple Working Hypotheses of Coupled Behavior (#T13E-02)

Kurt L. Feigl¹

S. Tabrez Ali ¹ John Akerly ⁴ E. C. Baluyut¹ Michael Cardiff ¹ Dante Fratta¹ William Foxall ² Corné Kreemer ⁵ Robert J. Mellors ³ Christina Morency³

Janice Lopeman⁴

Herbert F. Wang¹

Paul Spielman⁴

- 1. U. Wisconsin-Madison
- 2. Berkeley N.L.
- 3. Livermore N.L.
- 4. Ormat Technologies, Inc.
- 5. <u>U. Nevada-Reno</u>
- 6. <u>Silixa Ltd</u>.
- 7. Temple U.

Ali, S. T., J. Akerley, E. C. Baluyut, M. Cardiff, N. C. Davatzes, K. L. Feigl, W. Foxall, D. Fratta, R. J. Mellors, P. Spielman, H. F. Wang, and E. Zemach (2016), Time-series analysis of surface deformation at Brady Hot Springs geothermal field (Nevada) using interferometric synthetic aperture radar, *Geothermics*, 61, 114-120. http://dx.doi.org/10.1016/j.geothermics.2016.01.008

Sponsors: DOE:	InSAR & MEQ (Nicholas Davatzes et al.)	DE-EE0005510
	PoroTomo (Kurt Feigl et al.)	DE-EE0006760
NASA:	NISAR Science Definition Team (Kurt Feigl)	NNX12AO37G
SAR data: DLR:	TerraSAR-X and TanDEM-X	RES1236
JAXA:	ALOS	NASA DAAC at ASF
ESA:	ERS & ENVISAT	WINSAR

Ali et al. (Geothermics, 2016)

rate of volume change estimated from InSAR

Ali et al. (Geothermics, 2016)

Modeled cumulative volume change

Ali et al. (*Geothermics*, 2016)

Okmok Volcano, Alaska

Eruption of Okmok, photo taken Sunday, July 13, 2008 by Kelly Reeves [Alaska Airlines]

2 Eruptions in 2010 at Eyjafjallajökull in Iceland: basalt on flank (20 March – 12 April) trachyandesite at summit (14 April - 22 May) Literally means "the glacier of the island mountains" Eyja [island] fjalla [mountains] jökull [glacier] Kurt Feigl and Peter Sobol installed 3 UW broadband seismometers for ambient noise tomography

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCI

Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption

F Sigmundsson et al. Nature 468, 426-430 (2010)

The cover photo shows the base of the ash plume in the main crater on 11 May 2010, with hot 'bombs' of lava being ejected hundreds of metres into the air. Credit: Fredrik Holm (www.fredrikholm.se)

RESEARCH

UNDER THE VOLC

Signs of volcanic unrest before the eruption that closed Europe's air space PAGE 426

FOSSIL FUELS THE CHEAP COAL MYTH How 'peak coal' could undermine energy supplies PAGE 367

Click here for full article:

CLIMATE SCIENCE IN THE EYE OF A STORM Phil Jones reflects on those e-mails a year on PAGE 362

PARTICLE PHYSICS CRUNCH TIME FOR WIMPS Experiments should flush out **O** NATURE.COM/NATURE 18 November 2010 £10 Vol. 468, No. 7322

dark-matter particles PAGE 389

the paper at www.nature.com/nature Received 14 May; accepted 5 October 2010.

Full Methods and any associated references are available in the online version of

LETTER

nature

http://dx.doi.org/10.1038/nature09558 Click here for supplementary information:

http://www.nature.com/nature/journal/v468/n7322/abs/nature09558.html#supplementary-information

Models of intrusions, sills, and dikes

Illustration by Zina Deretksky, U.S. National Science Foundation (NSF)

Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption

InSAR TerraSAR-X 15.5 mm/fringe

GPS

N(quakes)

Freysteinn Sigmundsson, Sigrún Hreinsdóttir, Andy Hooper, Thóra Árnadóttir, Rikke Pedersen, Matthew J. Roberts, Níels Óskarsson, Amandine Auriac, Judicael Decriem, Páll Einarsson, Halldór Geirsson, Martin Hensch, Benedikt G. Ófeigsson, Erik Sturkell, Hjörleifur Sveinbjörnsson, Kurt L. Feigl

Nature, revised 2010-09-08

