


resolution:   
(1.4 meter) �

/ �
(7 pixels) �

�
=�

~ 0.2 m/pixel



resolution~ 0.2 m/pixel ~ 0.002 m/pixel 
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Synthetic Aperture Radar (SAR) focussing 

Unfocussed   
res (azimuth) ~ 5 km  
res (range) ~ 14 km 

Focussed 
res (azimuth) ~5 m 
res (range)   ~14 m 

Focussed 

res (azimuth) ~ 5 m 

 res (range) ~ 14 m 

Natural 

res (azimuth) ~ 5 km 

 res (range) ~ 14 km 

1000 X 
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Synthetic Aperture = a bigger (virtual) antenna 
è finer resolution 
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(spatial) resolution:  width (in meters) of smallest object that a 
sensor can distinguish

(image) resolution: “Basically, resolution quantifies how close 
lines can be to each other and still be visibly resolved.”
http://en.wikipedia.org/wiki/Image_resolution

“fine” versus “coarse” resolution

 

resolution



Correct Distorted

https://www.appliedimage.com/products/sine-
patterns-and-square-wave-targets



passive and active remote sensing – optical and microwave



RADAR = RAdio Detection And Ranging �
Active sensor 

All weather 
Night or day 

Like sonar:  

first echo is from 
nearest object 
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geometric coordinates 
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Radar Coordinates 

Ground Range Rg: 

projection of 
line of sight  
onto ground)  

Azimuth Xg: 

parallel to  
satellite velocity  
vector 
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Radar phase measures distance 
Radar amplitude measures reflectivity (backscatter intensity) 

• Layover 

• Foreshortening 

• Shadow 
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INSAR helps spot the differences 

Range Change 
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Map of phase shift shows fringes 
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Map of phase shift shows fringes 

a fringe is a contour line of 
displacement projected onto the 
satellite’s “line of sight”

1 fringe = λ/2

= 28 mm change in range
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INSAR geometry 

•  First image at t1 

•  Second image at t2 

•  Phase shift => range change  
•  Component of ground displacement along 

radar line of sight s 
•  Increasing range Δρ away from satellite 
•  Range is most sensitive to vertical 

component of displacement 
•  Motion parallel to ground track of satellite 

does not change range 
 

[ ])()(
2 12 tt φφ
λ

ρ −=Δ

 ŝu•−=Δρ

Range Change 
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Lucky at Landers => Lessons Learned 

•  Known signal with ground truth 

•  Large earthquake in arid area 
•  Near download station 
•  Software 
•  International cooperation 
•  Big picture 
•  People 
•  Peer review 

 

Range Change 
« La chance ne sourit qu'aux esprits bien préparés. »

“In the fields of observation, chance favors only the prepared mind.”
 

Louis Pasteur
 l’Université de Lille(1854)

Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute (1993), The displacement field of the Landers 
earthquake mapped by radar interferometry, Nature, 364, 138-142. http://dx.doi.org/10.1038/364138a0



Applying GIPhT to the Fawnskin aftershock   



Observed Phase Values     Modeled Phase Values 



Residual Phase values      Angular deviations 



Magmatic Inflation and Potential Caldera Inception in the Andean Cordillera: 
 Laguna del Maule, Chile   

EliasMunoz [2008] 

skyscraperlife.com [Jan 31, 2010]



InSAR maps spanning the 1058-day time interval from 
2007 Feb. 12 through 2010 Jan. 05.  

 following  Schmidt & Burgmann [2002]  

Gilbert et al., 2006 

a. observed phase values; 
b. modeled phase values calculated 
from the final estimate of the 
parameters in the Okada dislocation 
model;   
c. final residual phase values 
formed by subtracting final modeled 
values from observed phase values; 
d. angular deviations for final 
estimate.  
 One cycle of phase denotes 112 
mm of range change. 
 
The ALOS orbit numbers are 
 5602 and 21035.  
The altitude of ambiguity is –72.6 m. 
 
Feigl, K. L., H. Le Mével, S. Tabrez 
Ali, L. Córdova, N. L. Andersen, C. 
DeMets, and B. S. Singer (2014), 
 Rapid uplift in Laguna del Maule 
volcanic field of the Andean 
Southern Volcanic zone (Chile) 
2007–2012, Geophys. J. Int., 196, 
885-901. 
http://dx.doi.org/10.1093/gji/ggt438

Rapid uplift at Laguna del Maule (Chile) 891

Figure 7. Interferograms for Laguna del Maule, spanning the 1058-d time
interval from 2007 February 12 to 2010 January 5 (P06). The panels include
(a) observed phase values; (b) modelled phase values calculated from the
final estimate of the parameters in the Okada dislocation model; (c) final
residual phase values formed by subtracting final modelled values from
observed phase values and (d) angular deviations for final estimate. One
cycle of phase denotes 118.1 mm of range change. The ALOS orbit num-
bers are 5602 and 21035. The altitude of ambiguity is 71.7 m. Unit vector
[E,N,U] = [–0.6242, –0.1851, 0.7590]. The incidence angle is 41◦ from ver-
tical. Coordinates are easting and northing in kilometre using the Universal
Transverse Mercator (zone 19) projection (Snyder 1982).

and modelled values of wrapped phase. This objective function
may be interpreted as the mean (or L1 norm) of the angular de-
viations between the observed and modelled values of wrapped
phase. For each pixel in an interferogram, the angular deviation
is defined by the ‘arc’ function that returns the lesser (in abso-
lute value) of the two angles separating the direction of the ob-
served phase from that of the modelled phase. The ‘arc’ function
was originally defined by Mardia (1972), named by Niolaidis &
Pitas (1998), and expressed in eqs (14)–(16) of Feigl & Thurber
(2009).

GIPhT then solves the non-linear inverse problem using sim-
ulated annealing, starting from an initial estimate of the param-
eters. A set of upper and lower bounds for each parameter con-
strains the search a priori. GIPhT offers several important advan-
tages over previous strategies for analysing InSAR data. First, since
GIPhT operates directly on ‘wrapped’ phase data ranging from
−1/2 to +1/2 cycles, it avoids the possible pitfalls of unwrapping
(Feigl & Thurber 2009). Secondly, GIPhT can evaluate the statistical
uncertainty of the estimated model parameters because the resid-
ual phase values follow a von Mises distribution (Feigl & Thurber
2009).

The first conceptual model attributes the deformation to gravita-
tional loading and unloading caused by changes in the level of water
impounded in the reservoir behind the dam at LdM. The second
model attributes the deformation to an inflating magma chamber
at depth. Both models assume an elastic rheology with uniform
material properties everywhere in a half-space. Poisson’s ratio is
assumed to be ν = 1/4.

Figure 8. Interferograms for Laguna del Maule, spanning the 77-d time
interval from 2011 February 17 to 2011 May 5 (P08). The panels include (a)
observed phase values; (b) modelled phase values calculated from the final
estimate of the parameters in the Okada dislocation model for an inflating
sill; (c) final residual phase values formed by subtracting final modelled
values from observed phase values and (d) angular deviations for final
estimate. Asterisk indicates the location of centroid of the modelled sill.
One cycle of phase denotes 15.5 mm of range change. The Tandem-X orbit
numbers are 3672 and 4841 in Strip 12 of Track 28. The altitude of ambiguity
is 103 m. Unit vector [E, N, U] = –0.6418, –0.1718, +0.7475]. The incidence
angle is 42◦ from vertical. Coordinates are easting and northing in kilometre
using the Universal Transverse Mercator (zone 19) projection (Snyder 1982).

4.1 Gravitational loading and unloading

The water level in the LdM varies by as much as "h ∼ 10 m over the
course of a year, as shown in Fig. 14. Consequently, the incremental
gravitational loading stress is ρw ρg"h ∼ 0.1 MPa where ρw is the
density of water and g is the gravitational acceleration. For example,
we consider an interferogram spanning the 3-yr time interval from
2007 February 12 through 2010 January 5, as shown in Fig. 15.
During this time interval, the water level dropped by 10.37 m, as
recorded by the Ministry of Public Works in Chile. By assuming an
elastic formulation (Pinel et al. 2007) and a water table that follows
the shoreline, we calculate the modelled interferograms shown in
Fig. 15. To do so, we consider four different values for the Young’s
modulus E of the rock underlying the reservoir. The best-fitting
estimate E = 0.7 GPa produces the modelled phase values shown
in the last panel (d) of Fig. 15. The misfit of the gravitational
loading model to the observed phase values, as evaluated by the
circular mean deviation of the wrapped phase residuals, is 0.2134
cycles. This result is not significantly different (at the 95 per cent-
confidence level) from the null model of no deformation or from
models with Young’s modulus E ranging from 0.5 to 0.8 GPa. In
Fig. 15, the previous panels (a–c) show values of 20, 10 and 5 G Pa,
respectively for Young’s modulus E.

The best-fitting estimate of Young’s modulus E is 1–3 orders
of magnitude lower than the conventional values of 4–210 GPa
for crustal rocks derived from seismological studies and labora-
tory experiments of rock samples with P-wave velocities of 1.5 to
8.5 km s–1 and densities of ρd = 2.0 to 3.5 Mg m–3 (Brocher 2005),
assuming Poisson’s ratio ν = 1/4 and the relation E = 5ρdVp

2/6.
Similarly, our best-fitting estimate is much lower than the value of

 by guest on February 20, 2014
http://gji.oxfordjournals.org/
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Svartsengi from 1992.5 to 1993.4 Δt = 0.8616 yr (1 fringe = 1 cycle = 28 mm) 

Masters, A. E. (2011), Interferometric synthetic aperture radar analysis and elastic 
modeling of deformation at the Svartsengi geothermal field in Iceland, 1992 to 2010: 
feasibility of a reverse impulse-response evaluation of reservoir pressure from low Earth 
orbit, M.S. (Geophysics) thesis, University of Wisconsin, Madison.  
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Svartsengi from 1992.5 to 1993.4 Δt = 0.8616 yr (1 fringe = 1 cycle = 28 mm) 

Masters, A. E. (2011), M.S. (Geophysics) thesis, University of Wisconsin, Madison.  
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Time-Dependent Deformation at Brady Hot Springs 
Geothermal Field (Nevada) Measured With Interferometric 
Synthetic Aperture Radar and Modeled with Multiple Working 
Hypotheses of Coupled Behavior (#T13E-02) 

Ali, S. T., J. Akerley, E. C. Baluyut, M. Cardiff, N. C. Davatzes, K. L. Feigl, W. Foxall, D. 
Fratta, R. J. Mellors, P. Spielman, H. F. Wang, and E. Zemach (2016), Time-series analysis 
of surface deformation at Brady Hot Springs geothermal field (Nevada) using 
interferometric synthetic aperture radar, Geothermics, 61, 114-120.  
http://dx.doi.org/10.1016/j.geothermics.2016.01.008 
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rate of volume change estimated from InSAR 

dV/dt     = average rate of volume change  
 =  –48.2 ± 0.1 × 103 m3/yr 
 ≅  –1.5 liter/second 
 ≅  –25 gallon/minute 

Ali et al. (Geothermics,. 2016) 



Figure 4: Cumulative rate of volume change calculated from the final estimate of parameters, for each
pair, along with uncertainties (vertical bars) which have been scaled by the square root of the mean
squared error from the temporal adjustment. Horizontal bars indicate time span for each interfero-
metric pair.
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Figure 5: Volume change as a function of time as estimated from the individual pairs using temporal
adjustment, assuming a piecewise linear model. Each colored line segment represents an individual
InSAR pair connecting the first epoch with the second epoch. The mid-point of each time interval is
taken as a reference and plotted arbitrarily on the modeled curve (black). The slope of each colored
line segment denotes the rate of volume change estimated from the corresponding InSAR pair. A blue
bar, drawn at the second epoch for each pair, denotes the uncertainty.

20

total volume change ΔV in 10 years  
 =  –6 × 105 m3 

 ≅  –6 × 108 liter 

 ≅  –1.6 × 108  gallon 

Ali et al. (Geothermics,. 2016) 

Modeled cumulative volume change 



Okmok Volcano, Alaska 

Eruption of Okmok, photo taken Sunday, July 13, 2008 by Kelly Reeves [Alaska Airlines]



Reinisch, E. C., M. Cardiff, and K. L. Feigl (2016),  
Graph theory for analyzing pair-wise data: application to 
geophysical model parameters estimated from 
interferometric synthetic aperture radar data at Okmok 
volcano, Alaska, J Geod, 1-16
http://dx.doi.org/10.1007/s00190-016-0934-5 

Okmok Volcano, Alaska



2 Eruptions in 2010 at Eyjafjallajökull in Iceland: 
     basalt on flank (20 March – 12 April) 

  trachyandesite at  summit (14 April - 22 May) 
Literally means “the glacier of the island mountains”  

 Eyja [island] fjalla [mountains] jökull [glacier] 
Kurt Feigl and Peter Sobol installed 3 UW broadband 

 seismometers for ambient noise tomography  
 

2010.03.24 - Guðrún Sverrisdóttir
2010.04.21 - Þórdís Högnadóttir

2010-05-23  Kurt Feigl



Intrusion triggering of the 2010 
Eyjafjallajökull explosive eruption 

The cover photo shows the base of the ash plume in the main crater on 
11 May 2010, with hot ‘bombs’ of lava being ejected hundreds of 
metres into the air. Credit: Fredrik Holm (www.fredrikholm.se)

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.

Received 14 May; accepted 5 October 2010.
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