Best Practices in Field Education

David W. Mogk
Montana State University

Field Education and Support by the UNAVCO GAGE Facility
November 17, 2014
Field Learning Environment

What is unique, or at least intrinsic, to learning in the field?

• Scale is large relative to student; perception from an internal spatial viewpoint; “zoom” across scales; temporal and spatial reasoning

• Physical movement in the environment
 – Knowledge of spatial relations stored in memory, available for retrieval for later use
 – Experience can’t be reproduced in artificial or virtual environments
 – Strong sensory inputs

• Experience with raw, undistilled Nature
 – Make decisions about what is important, what to exclude
Cognitive Gains from Learning in the Field

• Develop higher order thinking skills
 – Comprehension, application, analysis, synthesis evaluation; Bloom 1965

• Deep understanding through experiential learning (Kolb, 1984; Bransford et al., 1999)

• Natural phenomena in their full environmental context, connections and relations

• Interdisciplinary, using full range of content knowledge

• Emphasis on inquiry and discovery
Metacognitive Gains from Learning in the Field

Students must be:

• Self-aware of their approach

• Self-monitoring of their progress

• Self-regulating as they modify approaches when confronted with emerging problems or inconsistencies

• Capable of
 — Planning, goal-setting
 — Critical-thinking

• Conation—knowledge and affect lead to intentional, goal-oriented actions
Affective Gains from Learning in the Field

• Awe, wonder, aesthetics, curiosity

• Intra- and inter-personal impacts

• Attitudes, values, beliefs, motivations....

• Ability to work in groups, collaborative and cooperative learning

• Increased self-confidence, self-reliance

• Life-long memories; poignant experiences

• Networking, Relations (mentor-peer; peer-peer)
Engaging the Community of Practice

• A long apprenticeship is required
 – Novice-master interactions in natural setting

• Language
 – Organized skills and practices; speech and gesture

• Selection and use of appropriate tools

• Communal ethics, values, expectations
 – Efficient work habits,
 – Stimulates independent thinking,
 – Engages decision-making strategies
 – Personal work ethics
 – Collaboration communication skills

“The best geologist is the one who has seen the most rocks”
(H.H. Read, 1939)
Embodiment—Brain and Body ARE Connected

• Importance of body in human cognition
 – How to act in the world, touching, moving reveals multiple perspectives
 – “Knowing your way around”; oriented in conceptual and physical space

• Immersion in the natural environment
 – Affective experiences encode important information

• Relevant Nature is systematically observed

• Fires all the senses—a powerful affective that impacts memory, learning

• Requires broad and sustained exposure to natural variations of Earth materials, structures, processes
Inscriptions—From Nature to Culture

• Representations of natural phenomena
 – Portable, successively refined to emphasize a specific idea; but, lose the larger context, complexity

• The first inscription is most important, changing Nature into Culture (i.e. artifacts such as maps, graphs, diagrams...)

• Enhance understanding of Nature by using increasingly refined representations

• A “chain” of inscriptions, feeding back and forth from field to analysis

• Public, Portable, Permanent records
We took the opportunity to slow down and look at field relations in detail.....
Preparation is Essential

- What type of field activity? Scope and breadth
- Selection of appropriate field site/activity
- Logistics; safety
- Instructor Preparation
- Student Preparation
- Use of instruments/technology
- Contingencies
Novelty Space

• “The quality of the field trip “is determined by its structure, learning materials, teaching method, and the ability to direct learning to a concrete interaction with the environment”—Orien and Hofstein 1994

• geographic novelty
 – which refers to the students' familiarity with the field trip site,

• cognitive novelty
 – which refers to the skills and concepts the students encounter and are expected to master on the field trip, and

• psychological novelty
 – which considers the social aspects of field trips, and related issues such as personal safety and comfort.
Learning Goals

• Initiating students in the “community of practice”
• Reinforce concepts or content delivered in the classroom
• Build confidence within a student in his/her abilities
• Develop practical geologic field skills (note-taking, sketching, map making)
• Introduce students to a geologic/geographic setting
• Do a focused exploration of a given topic
• Be part of a regional overview
• Develop higher-order thinking
• Perhaps simply introduce a sense of awe and wonder for new students
• Create a positive social environment, networking, collaborative and cooperative learning
Activity Design Principles

• Butler (2009) recommends that these types of activities are particularly amenable for field instruction:
 – setting student-led tasks
 – reinforcing scientific method through hypothesis-testing
 – developing integrative skills
 – problem solving, particularly through the interpretation of incomplete data-sets and managing uncertainty
 – dealing with real-life, real-time interdisciplinary problems
 – showing the limitations of observations / measurements in problem solving
 – developing self-reliance amongst students, taking personal responsibility for safety practices.
A true research experience...

- Applying “core” concepts and content from the geoscience curriculum
- Meaningful and relevant to students
- Strong affective component
 - Curiosity, motivation
 - Collaborative and cooperative work
 - “Ownership” of larger project
 - Responsibility for personal contributions
 - A trusting work environment
- Excitement about making truly new discoveries

Photo credit: Darrell Henry
Activity Design

• “Cradle to grave” research experience
• Field work—sampling and mapping
 – Formulation of research questions
 – Planning and execution of research plan
 – Sampling, mapping as required
 – Daily data compilations; sample control
 – Sample preparation (cutting billets, crushing rocks)
• Analytical studies during following semester
 – Microprobe, XRF, LA-ICPMS, Ar-Ar,.....
• Communicating results
 – Poster at Rocky Mountain GSA
 – Writing retreat—each project will be a section of a larger research manuscript
 – Senior Thesis

Photo credit: David Mogk
Scaffolding and Sequencing

- Experiential Learning, Inquiry, Discovery
- “Zone of Proximal Development” (Vygotsky)
- Purposefully place challenges in path of students; mastery leads to next steps...
- How much will you say to the students:
 - to get them started, during the activity, after the activity
 - How much will you demonstrate?
 - How much autonomy will the students have?
 - Will you engage a dialogue about what you're doing and why?
 - How will you balance showing and finding out?
Reconnaissance: Learning by Design

• First two weeks
 – Traverse entire study area
 – Introduction to major units
 • Review what is known, what is yet to be determined
 • Field notes
 • Measurement—structural data, strat sections...
 • Sampling—identification of key samples, sample collection and selection, prep in the field
 • Calibration: to make sure all students could identify rocks, measure structures accurately

• Logistics
 • Where do we need to go, how will we get there
 • What’s the best traverse?....
 • Safety, Radios, First Aid, Check-In
 • Daily Check—objectives, location, target samples

 – Instructor “talk-throughs”
 • Metacognitive aspects –What am I doing and why?
Research Projects—The Second Half

• List key targets, sampling/mapping goals, scientific objectives

• Each student assumed leadership to pursue research goals
 – Directed team on where to go, what to do

• Each student contributed to overall research effort
 – E.g. collecting samples for a given task if the primary leader would not likely get to that location
 – All are co-learners
 – TRUST, RESPECT

Photo credit: Darrell Henry
Formative Assessments

- Use pre- and post-activity quizzes
- Surveys (knowledge surveys, confidence logs)
- "Road checks” of field notebooks, maps,
- Make direct observations of students at work in the
- Interviews with the students in real time in the
- Videotape students in the field to record their actions
- Develop a scoring rubric to check for completeness, neatness, essential information recorded, etc.
- Reflective exercises—daily journal entries that record what was learned that day, what was interesting, important, confusing
- Concept sketches and concept maps
- Use of technology—use GPS instruments; social media used to record daily field activities; web page to showcase field results
Hard Earned Lessons

• Field work must be practiced early and often
• Field activities should be scaffolded to students’ level of development
• A long apprenticeship is required to become a master field geologist

Photo credit: Dave Mogk
Designing Effective Field Learning Experiences
http://serc.carleton.edu/NAGTWorkshops/field/design.html