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Abstract Ground-reflected global positioning system
signals measured by a geodetic-quality GPS system can be

used to infer temporal changes in near-surface soil mois-

ture for the area surrounding the antenna. This technique,
known as GPS-interferometric reflectometry, analyzes

changes in the interference pattern of the direct and re-

flected signals, which are recorded in signal-to-noise ratio
(SNR) data, as interferograms. Temporal fluctuations in the

phase of the interferogram are indicative of changes in

near-surface volumetric soil moisture content. However,
SNR phase is also highly sensitive to changes in overlying

vegetation, and thus, the effects of seasonal vegetation

changes on the ground-reflected signal must be considered.
Here a method is described for determining whether SNR

data are significantly corrupted by vegetation and for cor-

recting these effects. Absolute soil moisture content must
be determined for each site using ancillary data for the

residual moisture content. Accounting for vegetation ef-

fects significantly improves the agreement between GPS-
derived soil moisture and in situ measurements.

Keywords Hydrogeodesy ! Soil moisture ! Multipath !
Global positioning systems

Introduction

In recent years, GPS multipath signals have been used

opportunistically to infer land surface conditions, such as
snow depth, soil moisture, and changes in vegetation

conditions. The use of ground-reflected navigation signals

in remote sensing was first proposed by Hall and Cordey
(1988) to determine surface wind velocity over the ocean.

Subsequent studies primarily evaluated the potential of

GPS ground reflections to estimate sea surface wind speed
(Komjathy et al. 2000b; Zavorotny and Voronovich 2000;

Cardellach et al. 2003), sea level (Martin-Neira 1993;

Lowe et al. 2002) or to estimate sea ice thickness (Kom-
jathy et al. 2000a). More recent studies have explored the

ability of GNSS ground reflections to estimate land surface

conditions, including snow depth (Rodriguez-Alvarez et al.
2011a; Cardellach et al. 2012), soil moisture (Masters

2004), and vegetation state (Ferrazzoli et al. 2011; Ro-

driguez-Alvarez et al. 2011b, 2012).
The above studies focused on using specially designed

GPS receivers to infer changes in environmental condi-
tions. A parallel effort has shown that geodetic-quality GPS

antennas/receivers can also estimate changes in soil mois-

ture (Larson et al. 2008a, b, 2010), snow depth (Larson and
Nievinski 2013; McCreight et al. 2014), and vegetation

water content (Wan et al. 2014). This technique, known as

GPS-interferometric reflectometry (GPS-IR), relates tem-
poral changes in signal-to-noise ratio (SNR) data (hereafter

SNR interferograms) to changes in environmental condi-

tions around a GPS antenna for an area which scales with
the monument height (Katzberg and Garrison 1996).

In principle, GPS antennas and receivers are well suited

for land surface remote sensing because the GPS satellite
transmit frequency is L-band (microwave frequency) with

wavelengths of *19 (L1) or 24.4 (L2) cm. Microwave
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remote sensing of land surface properties has been studied

for over 30 years (Ulaby et al. 1982; Tsang et al. 1985;
Wang et al. 1986). For microwave frequencies, the per-

mittivity or dielectric constant of the ground is highly de-

pendent on its water content (Hallikainen et al. 1985). For
example, the dielectric constant of water is around 80,

compared to a dielectric constant of 3.5 for dry soils. The

permittivity of a material determines the extent to which an
electromagnetic wave will reflect off of the material, with

higher permittivity materials resulting in a greater reflec-
tion (Fuks and Voronovich 2000).

Because of this effect, a ground-reflected GPS signal

will be altered by the amount of water contained near the
ground surface. The GPS system can record temporal

changes in the ground-reflected signal, which correlate

with changes in properties such as soil moisture, snow
depth, and vegetation water content. However, the reflec-

tion is also affected by surface roughness and surface

temperature, though these effects are negligible for the
sites described in this study.

A modeling study described a retrieval algorithm for soil

moisture for the top 5 cm of the soil column under bare soil
conditions (Chew et al. 2014). A subsequent modeling

study showed the effects of changing vegetation canopies

on SNR data and how these effects could obfuscate soil
moisture estimations (Chew et al. 2015). This was also

demonstrated in a field study (Wan et al. 2014). Here, we

present an improved algorithm for estimating soil moisture
in the top 5 cm of the soil column using GPS-IR with

considerations made for vegetated environments. We will

present the algorithm and use observations from two dif-
ferent GPS stations to depict data processing steps and the

resulting soil moisture time series. These data serve as il-

lustrations of how the algorithm produces soil moisture
estimations—a complete validation dataset is provided

elsewhere.

Soil moisture measurement: standard
methodologies

Volumetric soil moisture, or the ratio of the volume of

water to the volume of bulk soil, is currently estimated
using both in situ and remote sensing techniques. In situ

soil moisture monitoring is performed either by physically

drying a volume of soil to calculate the amount of water or
through the use of electromagnetic probes (Rajkai and

Ryden 1992; Robock et al. 2000). These methods provide

information about soil moisture content for a volume
\1 m3. Soil moisture typically varies over relatively small

spatial scales, meters to hundreds of meters (Famiglietti

et al. 1998; Gomez-Plaza et al. 2001; Brocca et al. 2007;
Baroni et al. 2013), so it is often desirable to have a larger,

areal-averaged estimate. This can be accomplished either

by using a large number of in situ probes that are combined
to yield a larger-scale average or via remote sensing

methods with larger footprints.

Soil moisture remote sensing is usually done using a
monostatic radar or radiometer. Both monostatic radars and

radiometers may be mounted on towers or truck booms

(Schwank et al. 2005), flown on airplanes (Jackson et al.
1995; Jackson and Le Vine 1996; Mladenova et al. 2011),

or be mounted on satellites or spacecraft (Kerr et al. 2001;
Entekhabi et al. 2010). Those that are mounted on towers

or truck booms can give soil moisture estimates on the field

scale, or tens to hundreds of square meters, while those on
airplanes and satellites have successively larger sensing

areas. These measurements tend to be conducted during

field campaigns and do not tend to yield long-term records.
The exception to this would be instruments on satellites,

such as the Soil Moisture and Ocean Salinity or upcoming

Soil Moisture Active–Passive satellites, which give esti-
mates of soil moisture approximately every 3 days (En-

tekhabi et al. 2010). The sensing area of spaceborne radars

or radiometers is between 10 and 1600 km2.

GPS-interferometric reflectometry and SNR data

GPS-interferometric reflectometry estimates changes in

soil moisture and other land surface properties by recording
temporal changes in characteristics of SNR data recorded

by a GPS receiver. The interference between the direct and

reflected, or multipath, signals produces an oscillatory
pattern superimposed on the direct signal for low satellite

elevation angles (Fig. 1a). The SNR data for each rising or

setting satellite track are first converted from dB-Hz to a
linear scale (volts/volts). A low-order polynomial is then

fit to the data to retain only the interference pattern

(Fig. 1b, c).
Initial studies characterized the SNR interferogram us-

ing the following equation (Larson et al. 2008a, 2010):

SNR ¼ A cos
4pH0

k
sinE þ /

! "
ð1Þ

where H0 is the a priori reflector height. For bare, flat

ground H0 is within a few centimeters of the height of the
antenna phase center above the top of the soil. E is the

elevation angle of the satellite, A is an amplitude term, k is

the GPS wavelength, and / is a phase shift. Phase and
amplitude are calculated using least-squares estimation.

This analysis assumes that the SNR data have a constant

frequency and amplitude as a function of sine of E, which
is a simplification. Despite this, strong correlations are

observed between / and in situ measurements of soil

moisture (Larson et al. 2008b), which were later
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corroborated using a model of ground-reflected signals

(Chew et al. 2014).
Alternatively, a Lomb–Scargle periodogram (LSP) can

be used to estimate temporal changes in the dominant fre-

quency of the SNR interferogram. This is the method used
in GPS-IR estimations of snow depth (Larson and Nievin-

ski 2013). An LSP is like a fast Fourier transform, except

that it can be used for unevenly sampled data. Examples of
LSPs are shown in Fig. 1d. The dominant frequency may be

converted to an effective reflector height (Heff) using

Heff tð Þ ¼
1

2
fm;tk ð2Þ

where fm is the peak frequency of the LSP and t is the value

for a single day. The change in effective reflector height

(DHeff) throughout the year is defined by:

DHeff tð Þ ¼ H0 & Heff tð Þ ð3Þ

The power of the peak frequency of the LSP, or the LSP
amplitude (ALSP), is also affected by soil moisture,

vegetation, and other site conditions such as topography.

Metrics derived from SNR data (DHeff, A, ALSP, and /)
have been found to be affected to various extents by

changes in soil moisture (Larson et al. 2008a; Zavorotny

et al. 2010; Chew et al. 2014), vegetation (Wan et al.
2014), and snow depth (Larson and Nievinski 2013). Two

modeling studies found phase to be the best indicator of

changes in soil moisture (Chew et al. 2014) and A to be the
metric most related to changes in vegetation permittivity

and canopy height (Chew et al. 2015). Phase, however, was

also found to be significantly affected by changes in

vegetation (Chew et al. 2015). Thus, depending on the
extent of vegetation at a GPS site, the effect of vegetation

must first be quantified and removed before soil moisture

can be estimated from GPS SNR data.

PBO H2O network

The soil moisture algorithm to be described in the next

section is currently implemented at stations in the
EarthScope PBO H2O network with the greatest variations

in vegetation (Fig. 2; Larson and Small 2013). All sites in

the PBO H2O network have choke-ring antennas and nearly
all use Trimble NetRS receivers. They are located in areas

with limited topographic variations and are located in

ecosystems characterized as grass or shrub lands. Some of
the sites record data at 1-s intervals, and the rest record data

at 15-s intervals.

Signal-to-noise ratio data from the new L2C GPS sig-
nals are used by PBO H2O because the quality of the data

are higher than either the legacy L1 C/A or L2P from non-

code tracking receivers (Dunn 2010). The frequency of the
L2C signal corresponds to a maximum penetration depth of

5 cm (Njoku and Entekhabi 1996). Since GPS-IR only

analyzes reflections from low/grazing satellite elevation
angles, the real sensing depth is likely to be 2.5 cm or less

(Chew et al. 2014). PBO antennas tend to be between 1.5

and 2.1 m tall, which corresponds to a sensing area of
approximately 120 m2 per satellite track (Larson and
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Fig. 1 SNR interferograms are
observations on DOY 120 in
2012 at the Oklahoma GPS
station (okl3). a SNR
interferogram from PRN 7.
b Same SNR data as in a, but
converted to a linear scale and
detrended with a low-order
polynomial. c Detrended SNR
interferograms from four
different satellite tracks for
DOY 120 in 2012 at GPS
station okl3. Interferograms are
vertically offset for clarity.
Useable and non-useable tracks
for GPS-IR are labeled ‘‘good’’
and ‘‘bad,’’ respectively.
d Lomb–Scargle periodograms
for the interferograms in c
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Nievinski 2013). Multiple tracks are then combined so that

the aggregate sensing area is approximately 1000 m2.

GPS soil moisture estimation algorithm

Here, we describe the algorithm that is currently used to

produce the soil moisture estimations for stations in the

PBO H2O network with the greatest variations in vegeta-
tion (Fig. 3). Included in the algorithm is a method for

determining whether or not a phase time series is corrupted

by vegetation effects. The method for removing these ef-
fects is presented in the subsequent section.

There are several parameters described in this section,

and altering the parameters will affect the estimated soil
moisture time series to greater or lesser degrees. A list of

the parameters can be found in Table 1. They have been

ordered in terms of their relative importance in the algo-
rithm, with more important parameters being higher in the

table. The parameters used in the processing of observa-

tions or smoothing the time series were chosen after ob-
serving their effects at several PBO stations.

Selection of useful satellite tracks

Not all satellite tracks can be used for GPS-IR. Tracks

should have consistent reflections between satellite eleva-
tion angles of 5"–25" or 5"–30"; oscillations in the inter-

ferogram for higher angles are obscured by the antenna

gain pattern. Tracks should also not be obstructed by trees
or buildings or reflect from man-made surfaces like roads.

A track should have a relatively stable singular dominant

frequency for periods of the year when vegetation water

content or height is nearly constant. In general, the power

(ALSP) of the dominant frequency (Heff) should be at least
twice as high as the power of the noise or second most

powerful frequency in the periodogram.

Examples of SNR data from two useful satellite tracks
(red and green) and two tracks with significant noise cor-

ruption (blue and orange) are shown in Fig. 1c. The noise-

corrupted satellite tracks in Fig. 1c lack any dominant
frequency, which could introduce significant errors in

subsequent phase and amplitude estimation (Fig. 1d). Part
of the reason for these two tracks lacking a dominant fre-

quency is due to the fact that the two ground tracks pass

over a region of sloped topography (see Fig. 4 for a digital
elevation model and ground paths of the satellite tracks).

Satellite tracks that encompass areas with large topo-

graphic changes within 50 m of the antenna should be
avoided. There is no simple rule for determining when

topographic changes are too extreme, though we have

found that in general retrievals are the best when the to-
pographic gradient does not exceed 4 %. See also Larson

and Nievinski 2013 for a more detailed discussion.

In general, the more the satellite tracks that can be used
at a site, the more reliable the final soil moisture time series

tend to be. PBO H2O currently requires at least five useful

satellite tracks per day at each site. Figure 5 (top) shows a
histogram of the number of tracks used at all PBO H2O

stations in the fall of 2014. Figure 5 (bottom) shows for

one sample station how the number of useful tracks has
increased over the years as more satellites have been

launched. Temporary decreases in the number of tracks

occur due to abnormal noise that might be present in one or
more interferograms.

Estimation of each track’s a priori reflector height,
H0

The a priori reflector height (H0) is not known perfectly and
has to be estimated from the SNR data. PBO H2O uses the

median of Heff data that are free of snow events and sig-

nificant vegetation for the value ofH0 for each satellite track.

Calculate SNR metrics: /, A, Heff, and ALSP

SNR metrics for each day and each satellite track are cal-

culated using the procedure described in the previous sec-

tion. Examples of A, ALSP, and Heff time series from one
satellite track at a PBO H2O GPS site located in Oklahoma

(okl3) are shown in Fig. 6. There are clear seasonal changes

in the A and ALSP time series; seasonality is less apparent in
the Heff time series. The absolute magnitudes of A and ALSP

are unrelated to soil moisture or vegetation changes and are

instead primarily related to the transmit power of the
satellite and the gain of the antenna. Secondarily, there is a

Fig. 2 Map showing locations of PBO H2O soil moisture stations in
the continental USA
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dependence on the temperature of the receiver. Both A and

ALSP on each day are normalized as follows:

ALSPnorm tð Þ ¼
ALSP tð Þ

ALSP20%

ð4Þ

Anorm tð Þ ¼
A tð Þ

A20%

ð5Þ

where the 20 % subscript denotes the mean of the top 20 %

of A or ALSP values in the time series for an individual

satellite track; 20 % is a parameter that may be changed,

depending on the amount of noise present in the time series

or length of the total time series. Any normalized values
that are above 1.0 are set to 1.0. Examples are shown in

Fig. 6. Both ALSPnorm and Anorm for these satellite tracks are

very similar to one another, though there are differences
during times with the most vegetation.

Changes in the Heff time series are calculated using 3.

An example of the DHeff time series is shown in Fig. 6.
In general, DHeff does not change by much more than

Fig. 3 Flowchart depicting
steps in the algorithm to
estimate soil moisture for a GPS
site
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5 cm throughout the year, though significant snow or
vegetation water content at the site can produce larger

changes.

Quantify vegetation effects

In the absence of field measurements of seasonal vegeta-
tion water content change, the Anorm time series may be

used to estimate whether or not there are significant

vegetation effects corrupting the D/ time series. Chew
et al. (2014) showed with an electrodynamic model that an

increase in soil moisture produces a decrease in SNR am-

plitude. The model indicates that an increase in moisture

content by 0.4 cm3 cm-3 will result in Anorm decreasing
from 1.0 to 0.78. Since the difference between the residual

and saturated moisture contents for a typical soil is about

0.4 cm3 cm-3, we should not see a decrease in Anorm be-
yond 0.78 in the absence of vegetation growth. This means

that a satellite track whose Anorm time series stays below

0.78 for an extended period of time is likely to be affected
by something other than soil moisture variations, such as

changes in vegetation water content. A track whose time

series remains above 0.78 may have small vegetation ef-
fects, though for these cases it is difficult to determine

whether decreases in Anorm are from vegetation or from soil

moisture changes.

Fig. 4 Digital elevation model (DEM) and the approximate reflection
point paths for four satellite tracks at the GPS station okl3 in
Oklahoma. The DEM is referenced with respect to (0, 0), which is the
location of the antenna. The path traces represent specular reflection
points for satellite elevation angles between 5" and 40". The two
western tracks are the ‘‘bad’’ tracks in Fig. 1c; the two eastern tracks
are the ‘‘good’’ tracks in Fig. 1c
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Fig. 5 Number of satellite tracks varies depending on the GPS site
and through time. (Top) Histogram of the number of satellite tracks
used at PBO H2O stations during the fall of 2014. (Bottom) Time
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when additional satellites were launched. Because some satellites pass
over a site twice per day, it is possible to increase the number of
tracks by four when a new satellite is launched, though oftentimes not
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Table 1 List of parameters used in the algorithm

Description Symbol, if used in the text Value

Response of / to SMC, bare soil S 1.48 cm3 cm-3 deg-1

Residual moisture content SMCresdi Obtained from STATSGO dataset

Phase zeroing factor – Mean of the top (for filtering) or bottom (for residual
determination) 15 % of observed values

Amplitude normalization factor ALSP20% or A20% Mean of the top 20 % of observed values

Savitzky–Golay filter: frame length – 99

Savitzky–Golay filter: polynomial order – 2

Padding to decrease edge effects: number of repetitions – 30

Padding to decrease edge effects: value – Mean of either the first or last 15 observations

Parameters are ordered such that ones that affect the final soil moisture time series more than others are higher in the list
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Many PBO H2O sites are located in arid natural envi-
ronments in the western USA, which typically do not ex-

perience significant seasonal changes in vegetation. An

example of a site where vegetation effects are negligible is
GPS station mfle in Boulder, Colorado. The land cover

classification of this site is ‘‘desert steppe.’’ We have made

in situ measurements of vegetation status at this site (Wan
et al. 2014). The highest vegetation water content observed

over a several year period is *0.2 kg m-2, almost ten

times less than observed at the Oklahoma site (Fig. 6). As
expected, Anorm only rarely drops below 0.78 for some

satellite tracks. This indicates that vegetation effects are
not large compared to soil moisture variations. Although

most of the PBO H2O sites are in arid environments, ap-

proximately 20 % of the SNR data appears to be sig-
nificantly affected by vegetation (Fig. 7), as indicated by

the Anorm time series dropping below the 0.78 threshold.

The rest of the data may have smaller or no effects from
vegetation, similar to the case at mfle. In these cases, one

may skip to Step 6 in the algorithm below.

Figure 6 shows that there are large seasonal changes in
Anorm at the GPS station in Oklahoma (okl3) that are at-

tributed to changes in vegetation. The mean and standard

deviation of vegetation measurements made at the field site
during the growing seasons of 2011 and 2012 are shown in

Fig. 6. The corresponding phase time series in Fig. 6 also

shows large decreases in phase during times of vegetation
growth, though higher frequency variations are attributed

to soil moisture fluctuations.

If the GPS site does have a significant vegetation effect
as determined by the Anorm time series, then one should

proceed to the section ‘‘Algorithm for removing vegetation

effects’’ before estimating soil moisture in Step 6. If there
is a significant vegetation effect but the effect is of a short-

enough duration, then the phase data when Anorm is below
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0.78 may be removed, without using the vegetation filter.

However, simply removing the phase data without imple-
menting a vegetation correction will result in error for

periods surrounding the affected interval, which are still

affected by vegetation growth. It is up to the user whether
or not greater error is acceptable for the trade-off in sim-

plicity of data analysis.

Soil moisture estimation

At GPS sites with limited seasonal change in vegetation, as

indicated by the Anorm time series, soil moisture estimation

is relatively straightforward. We use data from the site
mfle, which was described above, as an example.

Zero the phase time series

For each year of data, the phase time series for each

satellite track is zeroed, i.e., the lowest values are set to
near zero. An example of this zeroing is shown in Fig. 6.

Sites in the PBO H2O network are zeroed by first calcu-

lating the mean of the lowest 15 % of observed phase data
for each year and each track. The mean is then subtracted

from the phase time series; 15 % is a parameter that may

be decreased or increased, depending on the amount of
noise present in the data.

Phase time series are zeroed yearly; this assumes that

soil moisture at the site reaches its residual value at some
point during the year. This assumption is generally valid

for the PBO H2O sites. Yearly zeroing is done so that any

period of anomalously low phase data, either due to non-
removal of vegetation effects or random noise, will not

affect the entire time series.

Determine the residual soil moisture content

Because temporal phase changes are relative and the
minimum moisture content of a soil is never zero, the

baseline phase value needs to be associated with the soil’s

residual moisture content. Residual moisture content,
SMCresid, is correlated with soil texture, and these data can

be found in publicly available data sets such as the US

Geological Survey’s STATSGO data set (Schwarz and
Alexander 1995). However, optimally the residual moisture

content of the soil at the site would be measured through

the use of gravimetry.

Estimate the soil moisture time series for each satellite

track

Modeled relationships between phase and soil moisture are

used to compute the estimated soil moisture time series,

SMCt ¼ SD/t þ SMCresid ð6Þ

where S is the expected slope between phase and soil
moisture. For time series with no significant vegetation

affect, S = 1.48 cm3 cm-3 deg-1 (Chew et al. 2014).

Estimate the soil moisture time series for the GPS site

as a whole

To estimate site-averaged soil moisture on the daily time-

scale, the median soil moisture value of all tracks for each

day is used. Uncertainties are computed as the standard
deviation of the soil moisture estimates from all satellite

tracks. For sites with a large number of satellite tracks, the

mean soil moisture value of all tracks could be used.
Figure 9a shows in situ soil moisture data from Camp-

bell Scientific 616 probes that have been buried at 2.5 cm

depth within 250 m of the desert steppe site (mfle). Also
shown are soil moisture estimates using GPS-IR, using data

from the GPS antenna. There is a good agreement between

in situ measurements and GPS soil moisture estimations at
this site, even without a vegetation filtering algorithm, as

expected given the Anorm time series.

Algorithm for removing vegetation effects

In this section, we describe how to correct the phase time

series to remove the effects from variations in vegetation

state around a GPS site. The vegetation adjustment algo-
rithm corresponds to the box ‘‘5. Remove vegetation ef-

fects’’ in Fig. 3. We use data from the Oklahoma GPS site

okl3 to demonstrate the importance of adjusting phase time
series for vegetation. Figure 6 (bottom) shows that the

Oklahoma GPS station is surrounded by vegetation that

varies in water content and height, both seasonally and from
year to year. Figure 10a shows how following the simple

soil moisture estimation procedure described above would

lead to poor agreement with in situ data. Because an in-
crease in vegetation causes a decrease in phase, and the

residual moisture content is set to the lowest observed phase

value, vegetation growth causes the resulting soil moisture
estimations to be too high in winter. Clearly, an adjustment

for vegetation is needed at this site. This could be deter-
mined solely from the Anorm time series, which shows val-

ues as low as 0.5 during the growing season.

At sites affected by vegetation, one can use the following
vegetation filtering algorithm to mitigate the effect of

vegetation. This filter was developed using the soil

vegetation model described and validated in Chew et al.
(2015). Over 15,000 modeled SNR interferograms and as-

sociated SNR metrics were simulated using random com-

binations of the vegetation parameters required by the
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model and an underlying soil moisture content of

0.15 cm3 cm-3 as input to the soil vegetation model.
Changes in SNR metrics with respect to their bare soil

values were calculated and saved in a database. The data-

base can be queried to estimate the change in phase corre-
sponding to any observed combination of Anorm, ALSPnorm,

and DHeff time series. The same random combinations of

vegetation parameters were then used with underlying soil
moisture contents of both 0.05 and 0.45 cm3 cm-3, and the

soil vegetation model was run again. Another database was
created from these simulations, which shows how SNR

metrics are expected to respond to changes in underlying

soil moisture given a particular vegetation state.
Now, we describe how to use the model database to

remove vegetation effects from observed SNR phase data.

This is done on a track-by-track basis, as the input data
(SNR metrics) are all track specific.

Process data for use in the vegetation filter

The vegetation filter assumes that the phase time series has

been zeroed such that data most affected by vegetation go
below zero. In order to conform to this convention, the

phase time series should be zeroed with respect to the

median of the highest values in the time series. We have
found the median of the highest 15 % of observed phase

data works well.

A low-pass filter is used to remove high-frequency noise
associated with soil moisture fluctuations from the Anorm,

ALSPnorm, and DHeff time series. The ends of the Anorm,

ALSPnorm, and DHeff time series are first padded to decrease
edge effects. Thirty repetitions of the mean of the first and

last 15 days of Anorm, ALSPnorm, and DHeff values are ap-

pended to the beginning and end of each time series.
Anorm, ALSPnorm, and DHeff are smoothed using a Sav-

itzky–Golay filter, a least-squares smoothing method, with

a polynomial order of two and frame size of 99 (Table 1).
We have found the S–G filter to be more successful than a

moving average or median filter when the change in

vegetation is either rapid and significant or short lived. This
is because the S–G filter is more successful at retaining the

maximum or minimum extents of a time series, though this

comes at the expense of potentially also retaining noise
unrelated to vegetation changes. For many cases, however,

a moving average filter is sufficient, though care must be

taken to not over-smooth the time series.

Estimate and subtract the phase change
from vegetation from the observed time series

A linear nearest neighbor search algorithm is used to find

the estimated phase caused by vegetation fluctuations,
given observed Anorm, ALSPnorm, and DHeff and the modeled

database described above (Fig. 8, top). Thus, one can es-

timate the effects of vegetation on phase using time series
of the other three SNR metrics. No field observations of

vegetation amount are needed. Estimated phase changes

from the database are smoothed through time using the
same Savitzky–Golay or moving average filter, and the

padded ends are removed.

The expected phase changes due to vegetation are sub-
tracted from the observed, unsmoothed phase time series,

resulting in phase time series that indicate soil moisture
variations only.

/SMC;t ¼ D/t & /veg;t ð7Þ

where /smc,t is the expected phase change due to soil
moisture at time t, D/t is the original observed time series at

time t, and /veg is the predicted phase change due to

vegetation at time t. This relationship is a simplification, as
it is based on the assumption that the total phase change is a

linear combination of the phase change due to soil moisture

and the phase change due to vegetation. Chew et al. (2015)
showed that it is only an approximation, though we have

found it does not significantly affect our results.

Determine the sensitivity change between phase
and soil moisture due to vegetation

Expected sensitivity changes between phase and soil mois-

ture are estimated, using the same procedure and linear
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Fig. 8 Depiction of the model simulations used in the vegetation
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(Bottom) Modeled relationships between ALSPnorm and the sensitivity
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search algorithm described above (Fig. 8, bottom). The
sensitivity of phase to soil moisture will change depending

on the extent of overlying vegetation (Chew et al. 2015), and

thus, the slope of the relationship between phase and soil
moisture, S, will change throughout the year. As shown in

Fig. 8 (bottom), changes in S are large and cannot be ignored.

Equation 6 used in Step 6 thus does not have a constant value
of S for data processed with the vegetation filter, but rather a

value that varies depending upon the vegetation state.

Once the phase data are processed with the vegetation
filter, one can calculate a soil moisture time series for each

track (Step 6, Fig. 3). Residual moisture content is selected

in the same way as for a bare soil case (Step 6b). When
converting phase to soil moisture, S is a function of time, as

described in Step 5c. The soil moisture time series for a

phase time series filtered for vegetation will thus be a
variant of (6):

SMCt ¼ StD/SMC;t þ SMCresid ð8Þ

As described above, the median of the track soil moisture

time series is taken to be representative of the soil moisture
of the site as a whole. There are additional uncertainties

due to assumptions made in the vegetation filtering algo-

rithm, which are not yet incorporated into final soil mois-
ture estimates.

If the vegetation filter is used on the observations from

mfle, there are only small changes in the resulting soil
moisture time series (Fig. 9b) relative to the uncorrected

time series (Fig. 9a). Although soil moisture estimates
using the filter are improved in early 2012, the rest of the

time series is largely unchanged.

Conversely, the vegetation filter makes a large differ-
ence in soil moisture estimations at the Oklahoma GPS

site, okl3. The vegetation-corrected soil moisture time

series for okl3 is shown in Fig. 10b, using the mean soil
moisture value for all tracks. Agreement between the GPS-

derived soil moisture estimations and those from in situ

data has been much improved over the non-vegetation-fil-
tered estimations (Fig. 10a). In particular, the large win-

tertime deviations described in the previous section have

been significantly reduced. A more complete validation
dataset is presented elsewhere.

Future work

Extending the soil moisture algorithm presented here to
include stations located in areas with greater topography or

for sites with other antenna types remains a subject of active

research. In order to use different antenna types, their gain
and phase patterns must be known to simulate their specific

relationships between soil moisture and SNR data. Includ-

ing data from other GNSS constellations in our soil mois-
ture estimations could enhance the spatial and temporal

coverage of tracks at some sites, though issues such as the

non-repeating ground tracks of other GNSS satellites would
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soil moisture estimates from
in situ probes installed at 2.5 cm
depth within 250 m the GPS
antenna mfle in Colorado.
Yellow points are the mean soil
moisture estimates resulting
from theta probe surveys.
a Black points and gray error
bars are the median and
standard deviation of soil
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are made. b Magenta points and
gray error bars are the median
and standard deviation of soil
moisture estimates using GPS-
IR, if the vegetation filtering
algorithm is used to correct the
phase data for vegetation effects

GPS Solut

123

Author's personal copy



first need to be modeled. Errors due to assumptions made in

the vegetation filtering algorithm should also be incorpo-

rated into final soil moisture estimations.

Conclusions

An algorithm is presented for estimating near-surface soil

moisture fluctuations for the immediate area surrounding a
geodetic-quality GPS antenna. This algorithm is being used

operationally at *120 GPS sites in the western USA

(Larson and Small 2013). The algorithm mitigates the ef-
fect of vegetation in estimated soil moisture time series by

using a soil vegetation model to predict relationships be-

tween SNR metrics due to changes in vegetation state. SNR
metrics Anorm, ALSPnorm, and DHeff are used to describe

expected changes in / due to vegetation, and these changes

are subtracted from the / time series to retain only the
effect of soil moisture fluctuations on /, which are then

converted to soil moisture estimates.

Two example soil moisture time series, derived from GPS
SNR phase data, were presented along with in situ soil

moisture data. Results from this study show that GPS-IR is a

viable technique to be used at GPS stations situated in envi-
ronments with a relatively high amount of natural vegetation

if appropriate steps are taken to model the vegetation effect.
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