Investigations of Slow Slip Along the Cascadia Subduction Zone Using GPS and Strainmeter Time Series

David Schmidt » Department of Geological Sciences, University of Oregon
Haiying Gao » Department of Geological Sciences, University of Oregon

We are studying the kinematic slip history of slow slip events on the Cascadia Subduction zone. Since the first discovery of transient slow slip by Dragert et al. (2001), several more recent aseismic slip events have been observed. GPS time series data are analyzed using the Extended Network Inversion Filter, which is an implementation of a Kalman filter (Segall and Matthews, 1997). The Extended Network Inversion Filter estimates a time-dependent signal on a buried dislocation by filtering uncorrelated station displacements. We have analyzed GPS time series for slip transients from 2003 to 2005 (Gao and Schmidt, 2006; Schmidt, 2006a). Initial results indicate that the release of strain from one event to the next is not uniform along-strike. In addition, the regular recurrence interval observed beneath southern Vancouver Island is not observed with a slip patch located beneath southern Puget Sound.

Prior to the 2005 event, PBO installed tensor strainmeters on the northern Olympic Peninsula. The observed strain transients are compared to predicted strain time series to cross-validate these new instruments. Generally, the magnitude and sign of the transient is in rough agreement between the observed and predicted time series (see figure below). Based on simulations, the rollback from -0.15 to -0.1 microstrain late in the observed time series can be explained by the passage of a nodal plane in the strain field over the instrument. This finding indicates that the strainmeters provide greater resolution of slip propagation on the plate interface (Schmidt, 2006b).

References
This work was supported by NSF Grant EAR-0346037.