
 11/16/2018 1

UNAVCO’s Java Clients for GPS Data/Metadata Discovery

Contents
About the Java Clients

Recommended Java

Installing the Clients

Using the Clients – Introduction with Examples

About the Java Clients

The Java clients were created to give UNAVCO customers a convenient command line

mechanism to do monument, metadata, and data discovery and file download from

UNAVCO. We envision users experimenting with the configuration they need for doing

regular discovery, and then most likely incorporating the client(s) into scripts for

gathering the data desired. There are several hurdles for the user in using this type of

client, starting with the Java installation on the users system. This document is not

intended to fully identify/solve situations that the user may encounter that cause the

clients to fail. A few common cases are covered, but please contact archive@unavco.org

if you are having trouble.

In conjunction with the clients we are releasing a web GUI for interactive search and

access. The web GUI and the command line clients make requests to the same web

services on our server. The web services connect to UNAVCO’s data sources. Not all

data sources are updated continuously, some information sources feeding the clients are

updated once per day.

WARNING! There are bugs in this software! Some are known to us and others are not.

Please inform us of the bugs that you find by emailing archive@unavco.org.

WARNING! It is possible to submit requests via the clients, especially unavcoFiles.jar,

that take a long time to return. In some cases the client will time out. The best strategy is

to break up your queries into manageable chunks. For example, if you ask for a list of all

hatanaka files for all of PBO for one day, you will most likely receive the result in a

reasonable time. However, if you request a list of all hatanaka files for all of PBO the

query will most certainly time out. Currently, requesting a list of all hatanaka files for a

single PBO station, e.g. P041 installed in 2004, returns the list (around 3000 records in

October 2012) in a few minutes.

Java Version

This application is works with Java Runtime Environments (versions 5 through 8).

mailto:archive@unavco.org
mailto:archive@unavco.org

 11/16/2018 2

Installing the Clients

Unzip the contents of unavcoClients.zip into a directory of your choosing. After

unzipping, the directory will contain the following:

axiom-api-1.2.5.jar

axiom-impl-1.2.5.jar

axis2-kernel-1.3.jar

commons-codec-1.3.jar

commons-httpclient-3.0.1.jar

commons-logging-1.1.jar

stax-api-1.0.1.jar

unavcoFiles.jar

unavcoGrouping.jar

unavcoMetadata.jar

unavcoMonuments.jar

wsdl4j-1.6.2.jar

wstx-asl-3.2.1.jar

xbean-2.2.0.jar

xbean.jar

xmlpublic.jar

XmlSchema-1.3.2.jar

Most of these are the supporting library jar files. The actual "clients" are:

unavcoFiles.jar

unavcoGrouping.jar

unavcoMetadata.jar

unavcoMonuments.jar

To test the install and its compatibility with your Java installation execute the following

command on your system (change directory to the one with the clients first):

java -jar unavcoMonuments.jar

The result should be the user help giving a summary of the command line options:

$ java -jar unavcoMonuments.jar

-groupingEqu <grouping name> (grouping name is exact match)

-groupingStart <grouping name> (grouping name starts with)

-groupingContains <grouping name> (grouping name contains)

-boundingBox <min lat> <min lon> <max lat> <max lon>

-boundingRadius <lat> <lon> <radius>

-4charEqu <list of station codes> (station code is exact match)

-4charStart <list of station codes> (station code starts with)

-4charContains <list of station codes> (station code contains pattern)

-pending

-active

-inactive

-retired

 11/16/2018 3

-dataSpanIncludes <date>

-archiveStartBefore <date>

-archiveStartAfter <date>

Valid Date Formats

yyyy-ddd

yyyy-mmm-dd

yyyy-mm-dd

-hasMetPack

-xml (outputs xml)

-permanent

-campaign

If instead you get something like the following result:

$ java -jar client_libs/unavcoMonuments.jar

Exception in thread "main" java.lang.UnsupportedClassVersionError:

org/unavco/gpssearch/MetadataClient (Unsupported major.minor version 49.0)

 at java.lang.ClassLoader.defineClass0(Native Method)

 at java.lang.ClassLoader.defineClass(ClassLoader.java:539)

 at

java.security.SecureClassLoader.defineClass(SecureClassLoader.java:123)

 at java.net.URLClassLoader.defineClass(URLClassLoader.java:251)

 at java.net.URLClassLoader.access$100(URLClassLoader.java:55)

 at java.net.URLClassLoader$1.run(URLClassLoader.java:194)

 at java.security.AccessController.doPrivileged(Native Method)

 at java.net.URLClassLoader.findClass(URLClassLoader.java:187)

 at java.lang.ClassLoader.loadClass(ClassLoader.java:289)

 at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:274)

 at java.lang.ClassLoader.loadClass(ClassLoader.java:235)

 at java.lang.ClassLoader.loadClassInternal(ClassLoader.java:302)

… you are most likely accessing an older version of Java. If you know you have the right

version of Java on your system, you may have a path issue. To check, use an absolute

path to your java. Otherwise, please upgrade to any versions 5 through 8. UNAVCO

provides a link from our DAI version 2 GUI and Java clients page to the Java download

page for your convenience:

https://www.unavco.org/data/gps-gnss/data-access-methods/dai2/dai2.html

If you still have trouble after installing the correct version of java, please inform us by

emailing archive@unavco.org.

https://www.unavco.org/data/gps-gnss/data-access-methods/dai2/dai2.html
file:///D:/fboler2013/data-group/ap/documents/archive@unavco.org

 11/16/2018 4

Using the Clients – Introduction with Examples

The four clients are:

unavcoMonuments.jar

unavcoGrouping.jar

unavcoMetadata.jar

unavcoFiles.jar

If you run each one with no command line options (e,g, java –jar

<clientname.jar>[return]) you will get back the possible command line options for that

client.

User Input Conventions:

Dates: User-supplied dates use either YYYY-DOY or YYYY-MM-DD, all digits,

or YYYY-MMM-DD, where MMM is the 3-letter month.

Latitude, Longitude: User supplied geographic coordinates are decimal degrees.

Longitudes should be in the range (-180., 180.], and latitudes [-90., 90.].

boundingRadius: User supplied distance in km.

grouping*: User supplied campaign or network name, enclose in single quotes if

name contains spaces.

unavcoMonuments.jar:

This client is intended to show information about monuments within the UNAVCO

database. Most monuments in the UNAVCO database correspond to data held at

UNAVCO. (Note: A more comprehensive database of monuments in use by the

UNAVCO community, but not restricted to monuments with data in the UNAVCO

Archive is under construction.)

You can restrict the results returned by the client in a number of ways. Here are the

command line options:

$ java -jar unavcoMonuments.jar

-groupingEqu <grouping name> (grouping name is exact match)

-groupingStart <grouping name> (grouping name starts with)

-groupingContains <grouping name> (grouping name contains)

-boundingBox <min lat> <min lon> <max lat> <max lon>

-boundingRadius <lat> <lon> <radius>

-4charEqu <list of station codes> (station code is exact match)

-4charStart <list of station codes> (station code starts with)

-4charContains <list of station codes> (station code contains pattern)

-pending

-active

 11/16/2018 5

-inactive

-retired

-dataSpanIncludes <date>

-archiveStartBefore <date>

-archiveStartAfter <date>

Valid Date Formats

yyyy-ddd

yyyy-mmm-dd

yyyy-mm-dd

-hasMetPack

-xml (outputs xml)

-permanent

-campaign

UNAVCO categorizes monuments as either “permanent” or “campaign”. There are over

2,700 permanent monuments and over 9,000 campaign monuments in the UNAVCO

database. If you know you want strictly one or the other, you should be sure to use one of

the -permanent or –campaign options since this will weed out a lot of results you are

probably not interested in.

For permanent station monuments, there are several operational status categories that you

may wish to use for narrowing your search. These are described by the options:

-pending

-active

-inactive

-retired

with definitions: active - data has been received within the past year; inactive - no data

within the past year, but not retired; retired - disassembled or destroyed permanent

station with no expectation of additional data that would extend the end time; pending -

no data yet.

For permanent station monuments, you can restrict your search to stations with a met

pack .using the -hasMetPack flag.

A simple example is to run the command with a known 4-character ID to find out if

UNAVCO “knows about” the monument of interest. Bear in mind that UNAVCO’s 4-

character ID for a given monument may vary from the ID you use, especially for

campaign monuments.

$ java -jar unavcoMonuments.jar -4charEqu av04

Four char id, Monument Name, Lat, Lon,

AV04,AV04AUGST_AK2004,59.3626,-153.4447

 11/16/2018 6

This tells you that a monument with 4-character ID av04 exists in the UNAVCO

database. Note that the latitude, longitude used for input and given as output are always

decimal degrees. Also note that the input of the 4-character ID is case insensitive. In the

UNAVCO database, IDs are in caps, and in the example above the input ‘av04’ requested

yields the output result ‘AV04’.

To illustrate that using -4charEqu may give unexpected results because the 4 character ID

is not required to be unique in the UNAVCO database, run the same command for ‘p100’

instead of ‘av04:

$ java -jar unavcoMonuments.jar -4charEqu p100

Four char id, Monument Name, Lat, Lon,

P100,P100,63.768,-145.7697

P100,ParkValleyUT2007,41.8568,-113.2942

The 4 character ID P100 exists as both the Park Valley Utah PBO station P100 and the

Denali campaign site P100. Because UNAVCO does not require each monument to have

a unique 4-character ID, you may see multiple records that use the same 4-character ID,

and these will be from different monuments. Within the permanent station subset of

UNAVCO monuments there will not be duplication of 4-character IDs for different

monuments. Duplication may occur within the campaign subset and also a campaign

monument 4-character ID may be a duplicate of a permanent station 4-character ID.

You can get more verbose output and additional information for each monument returned

by using the –xml flag. For the av04 example:

$ java -jar unavcoMonuments.jar -4charEqu AV04 -xml

<xml-fragment xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <MaxDate>2007-12-23T23:59:00.000Z</MaxDate>

 <MinDate>2004-09-08T23:44:00.000Z</MinDate>

 <Monuments>

 <Monument>

 <MonumentID>18438</MonumentID>

 <MonumentName>AV04AUGST_AK2004</MonumentName>

 <MonumentType>Permanent</MonumentType>

 <FourCharCode>AV04</FourCharCode>

 <Grouping>PBO Magmatic, PBO, PBO Alaska Region</Grouping>

 <Latitude>59.3626</Latitude>

 <Longitude>-153.4447</Longitude>

 <StartTime>2004-09-08T23:44:00.000Z</StartTime>

 <EndTime>2007-12-23T23:59:00.000Z</EndTime>

 <Operational>Active</Operational>

 </Monument>

 </Monuments>

</xml-fragment>

In addition to the 4-character ID, monument name, latitude, and longitude, with the –xml

flag you get lots of additional information formatted with xml tags including: the

UNAVCO monument id, the monument type (either permanent or campaign, which

represents its current or most recent utilization), grouping, (list of the networks or

campaigns that have employed the monument), the start time (end time) of data in the

 11/16/2018 7

UNAVCO Archive associated with the monument, defined as the earliest (latest) data

epoch in the UNAVCO Archive, and finally the operational status. In addition, the

earliest start time and latest end time for data for all of the monuments returned is

included ahead of the set of individual monument records. The information provided

comes from a data source that is updated once per day.

Advanced searching on temporal information can be achieved using the options:

-archiveStartBefore <date> [YYYY-MM-DD]

-archiveStartAfter <date> [YYYY-MM-DD]

-dataSpanIncludes <date> [YYYY-MM-DD]

Looking at the xml output for the search above, you see the StartTime and EndTime

fields. These give the span of data held at UNAVCO. Using the -dataSpanIncludes flag

with a date will return monuments for which the date falls within the data span of the

monument. It does not guarantee data for any particular day however. The best way to

test for data for a particular day is to use the client unavcoFiles.jar.

The two options -archiveStartBefore and –archiveStartAfter are intended to allow the

user to discover when UNAVCO has added to its collection of monuments. For example

if you run this command each day,

$ java -jar unavcoMonuments.jar –archiveStartAfter <yesterdays date>

advancing the date by one each day, you can discover any new monuments on a daily

basis. Keep in mind that the dataSpanIncludes dates are generally unrelated to the

archiveStartBefore(After) date. For example, UNAVCO may receive and archive

historical data for a retired site. In this case the all of the data span will precede the date

that UNAVCO introduced the monument.

If you are interested in a particular spatial area and wish to find new monuments by

checking each day, you can try (for example):

$ java -jar unavcoMonuments.jar –archiveStartAfter <yesterdays date> -

boundingBox 40 -112 40.25 -110

unavcoGrouping.jar:

This client is intended to show the full set of groupings (permanent station network

names, campaign names) in the UNAVCO database. This can be useful for use with the

other clients in specifying matches to the –grouping* flags.

 11/16/2018 8

unavcoMetadata.jar:

This client is intended to show processing metadata within the UNAVCO database for a

particular monument. The entire history of the metadata for each matching monument

will be shown. Alternatively, the client can give the metadata for a single date. Most

monuments in the UNAVCO database correspond to data held at UNAVCO, and for all

of these there will be metadata. You can restrict the results returned by the client in a

number of ways. Here are the command line options:

$ java -jar unavcoMetadata.jar

-groupingEqu <grouping name> (grouping name is exact match)

-groupingStart <grouping name> (grouping name starts with)

-groupingContains <grouping name> (grouping name contains

-4charEqu <list of station codes> (station code is exact match)

-4charStart <list of station codes> (station code starts with)

-4charContains <list of station codes> (station code contains pattern)

-monID <UNAVCO monument id>

-visitID <UNAVCO visit id>

-stationID <UNAVCO station id>

-metadataDate <date>

-newerThan <date>

-olderThan <date>

-newestOnly

-recordModifiedBefore <date>

-recordModifiedAfter <date>

-recordModifiedOn <date>

-permanent

-campaign

-recordCountonly

-xml (outputs xml)

The options -permanent; -campaign are as for unavcoMonuments.jar, to restrict the

search to one type or the other.

-metadataDate restricts the metadata returned to a single day. There may be more than

one record that day if there were one or more changes on the day of interest. The output

gives the date-time for the start and end of the time span over which the metadata is

applicable.

Here is an example returning all of the metadata records for PBO station AV04:

$ java -jar unavcoMetadata.jar -4charEqu av04

4_char_id,station_name,elev,lat,lon,start_time,end_time,antenna_model,antenna_s

erial,antenna_height,radome_model,radome_serial,receiver_model,receiver_serial,

receiver_firmware

AV04,AV04AUGST_AK2004,915.9493,59.3626,-153.4447,2004-09-08T23:44:00.000Z,2005-

08-25T19:25:00.000Z,TRM29659.00,0220335650,0.0083,SCIT,not provided,TRIMBLE

NETRS,4420233978,0.7-0 07 May 2004

AV04,AV04AUGST_AK2004,915.9493,59.3626,-153.4447,2005-08-25T19:41:00.000Z,2005-

09-07T23:59:00.000Z,TRM29659.00,0220335650,0.0083,SCIT,not provided,TRIMBLE

NETRS,4522251506,1.1-2 19 Apr 2005

 11/16/2018 9

AV04,AV04AUGST_AK2004,915.9493,59.3626,-153.4447,2005-09-08T20:48:00.000Z,2006-

01-17T17:00:00.000Z,TRM29659.00,0220335650,0.0083,SCIT,not provided,TRIMBLE

NETRS,4450241622,1.1-2 19 Apr 2005

AV04,AV04AUGST_AK2004,915.9493,59.3626,-153.4447,2006-09-02T22:27:00.000Z,2006-

09-04T00:28:00.000Z,TRM29659.00,0220369851,0.0083,SCIT,not provided,TRIMBLE

NETRS,4450241622,1.1-2 19 Apr 2005

AV04,AV04AUGST_AK2004,915.9493,59.3626,-153.4447,2006-09-04T02:49:00.000Z,2008-

07-21T23:59:00.000Z,TRM29659.00,0220369851,0.0083,SCIT,0604,TRIMBLE

NETRS,4552261622,1.1-2 19 Apr 2005

So if we wished to get only the metadata in effect for the date 2005-08-24, one day before

the receiver was replaced on 2005-08-25:

$ java -jar unavcoMetadata.jar -4charEqu av04 –metadataDate 2005-08-24

4_char_id,station_name,elev,lat,lon,start_time,end_time,antenna_model,antenna_s

erial,antenna_height,radome_model,radome_serial,receiver_model,receiver_serial,

receiver_firmware

AV04,AV04AUGST_AK2004,915.9493,59.3626,-153.4447,2004-09-08T23:44:00.000Z,2005-

08-25T19:25:00.000Z,TRM29659.00,0220335650,0.0083,SCIT,not provided,TRIMBLE

NETRS,4420233978,0.7-0 07 May 2004

On the date of the receiver replacement, the client returns both metadata records for that

date:

$ java -jar unavcoMetadata.jar -4charEqu av04 –metadataDate 2005-08-25

4_char_id,station_name,elev,lat,lon,start_time,end_time,antenna_model,antenna_s

erial,antenna_height,radome_model,radome_serial,receiver_model,receiver_serial,

receiver_firmware

AV04,AV04AUGST_AK2004,915.9493,59.3626,-153.4447,2004-09-08T23:44:00.000Z,2005-

08-25T19:25:00.000Z,TRM29659.00,0220335650,0.0083,SCIT,not provided,TRIMBLE

NETRS,4420233978,0.7-0 07 May 2004

AV04,AV04AUGST_AK2004,915.9493,59.3626,-153.4447,2005-08-25T19:41:00.000Z,2005-

09-07T23:59:00.000Z,TRM29659.00,0220335650,0.0083,SCIT,not provided,TRIMBLE

NETRS,4522251506,1.1-2 19 Apr 2005

You can filter the information returned based on the date that the metadata record was

changed in the UNAVCO database using these flags:

-recordModifiedBefore <date>

-recordModifiedAfter <date>

-recordModifiedOn <date>

Additional metadata fields are supplied with the –xml flag including the UNAVCO

monument_id and monument style. The UNAVCO monument id flag –monID is very

useful for narrowing the metadata records shown to the station of interest when the 4

character ID is non-unique in the UNAVCO database. The following example shows

metadata records from both of the sites with 4 character id ‘P100’

$ java -jar unavcoMetadata.jar -4charEqu p100

4_char_id,station_name,elev,lat,lon,start_time,end_time,antenna_model,antenna_s

erial,antenna_height,radome_model,radome_serial,receiver_model,receiver_serial,

receiver_firmware

 11/16/2018 10

P100,P100,692,63.768,-145.7697,2003-06-18T18:31:00.000Z,2003-06-

18T18:31:00.000Z,TRM41249.00,12337743,1.1162,null,null,TRIMBLE

5700,0220280492,1.2

P100,P100,692,63.768,-145.7697,2003-10-17T17:36:00.000Z,2003-10-

17T23:45:00.000Z,TRM22020.00+GP,0220050509,0.9012,null,null,TRIMBLE

4000SSE,3337A03970,7.19

P100,P100,692,63.768,-145.7697,2005-06-17T02:14:00.000Z,2005-06-

19T05:24:00.000Z,TRM22020.00+GP,0220048770,0.843,null,null,TRIMBLE

4000SSI,3604A14201,7.19

P100,P100,692,63.768,-145.7697,2006-10-27T01:03:00.000Z,2006-11-

01T07:29:00.000Z,TRM22020.00+GP,0220050379,1.088,null,null,TRIMBLE

4000SSI,3628A16401,7.19

P100,ParkValleyUT2007,1884.12,41.8568,-113.2942,2007-03-29T01:55:00.000Z,2008-

07-22T23:59:00.000Z,TRM29659.00,0220375560,0.0083,SCIT,1939,TRIMBLE

NETRS,4549261333,1.1-2 19 Apr 2005

P100,P100,692,63.768,-145.7697,2007-10-05T02:36:00.000Z,2007-10-

07T21:13:00.000Z,TRM22020.00+GP,0220050481,1.0894,null,null,TRIMBLE

4000SSI,14493,7.19

In order to request just the campaign site you can use –campaign, or specify the

UNAVCO monument id. The latter would be necessary if there were more than one

campaign monument with the same 4 character ID. You can use the –xml flag with

unavcoMonuments.jar or unavcoMetadata.jar to see the monument id:

$ java -jar unavcoMonuments.jar -4charEqu p100 -xml

<xml-fragment xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <MaxDate>2008-07-22T23:59:00.000Z</MaxDate>

 <MinDate>2003-06-18T18:31:00.000Z</MinDate>

 <Monuments>

 <Monument>

 <MonumentID>18126</MonumentID>

 <MonumentName>P100</MonumentName>

 <MonumentType>Campaign</MonumentType>

 <FourCharCode>P100</FourCharCode>

 <Grouping>Denali 2003-January-July, Denali 2003-July-November, Denali

2005, Denali 2006, Denali 2007</Grouping>

 <Latitude>63.768</Latitude>

 <Longitude>-145.7697</Longitude>

 <StartTime>2003-06-18T18:31:00.000Z</StartTime>

 <EndTime>2007-10-07T21:13:00.000Z</EndTime>

 <Operational>Episodic</Operational>

 <ArchiveStart>2004-02-26T00:00:00.000Z</ArchiveStart>

 </Monument>

 <Monument>

 <MonumentID>21157</MonumentID>

 <MonumentName>ParkValleyUT2007</MonumentName>

 <MonumentType>Permanent</MonumentType>

 <FourCharCode>P100</FourCharCode>

 <Grouping>PBO Extension, PBO, PBO Basin and Range Region</Grouping>

 <Latitude>41.8568</Latitude>

 <Longitude>-113.2942</Longitude>

 <StartTime>2007-03-29T01:55:00.000Z</StartTime>

 <EndTime>2008-07-22T23:59:00.000Z</EndTime>

 <Operational>Active</Operational>

 <ArchiveStart>2007-03-30T00:00:00.000Z</ArchiveStart>

 </Monument>

 </Monuments>

</xml-fragment>

 11/16/2018 11

The monument id for the permanent station is 21157, so use this to get the metadata for

PBO’s P100 only:

$ java -jar unavcoMetadata.jar -monID 21157

4_char_id,station_name,elev,lat,lon,start_time,end_time,antenna_model,antenna_s

erial,antenna_height,radome_model,radome_serial,receiver_model,receiver_serial,

receiver_firmware

P100,ParkValleyUT2007,1884.12,41.8568,-113.2942,2007-03-29T01:55:00.000Z,2008-

07-22T23:59:00.000Z,TRM29659.00,0220375560,0.0083,SCIT,1939,TRIMBLE

NETRS,4549261333,1.1-2 19 Apr 2005

unavcoFiles.jar:

This client is intended to allow the user to obtain the URLs to files available for

download from the UNAVCO Archive ftp area. Because the Archive holds several

million files on the ftp area, and to avoid the risk that this client may overload the

database, the user must narrow the set of records requested. In other words, a request with

no constraints will fail with a message that the user must restrict the request. The client

packages the results in “pages”, with a maximum of 2000 records in a page. If the request

would return over 2000 records, the user will need to repeat the request to receive higher

page numbers up to the full set of results (using the –pagenumber <page number> flag.

The user must also specify the type(s) of files desired. [Note: the client currently does not

return campaign data files in the UNAVCO Archive. This capability will be added in a

future release.]

Running the client with no flags gives the options:

$ java -jar unavcoFiles.jar

constraints – you must supply either date or station or network constraints

-4charEqu <station code list>

-4charStart <station code start character(s)>

-4charContains <station code contains character(s)>

-monID <UNAVCO monument id>

-groupingEqu <grouping pattern>

-groupingStart <grouping pattern>

-groupingContains <grouping pattern>

Date format for the following arguments = 'YYYY-MM-DD' or 'YYYY-DOY'

-dataExactDate <date>

-dataStartDate <date>

-dataEndDate <date>

-newerThan <date>

-olderThan <date>

exported types to return – you must supply at least one

-igsLog

-rawNotBinex

-binex

-rinexObs

-rinexHatanaka

-rinexNav

 11/16/2018 12

-rinexMet

-rinexQC

-sinex

-rms

-positionTarball

-position

-positionCSV

-position+CSVTarball

-velocity

special flags

-pageNumber <page number> <pages contain 2000 records. By default you get page

1; you may continue getting pages by resubmitting the query and incrementing

the page number.>

-recordCountOnly <returns only the size and count of the files>

-xml <outputs xml instead of csv, with extra fields>

NOTE: It may take several minutes to receive results from your query

*NOTE: This client will timeout with a Java error if the query takes more than

10 minutes to return*

* Hint: queries that are not sufficiently narrow are more likely to

timeout*

* If a timeout occurs, breaking up your query through station, grouping or

date constraints should be attempted*

The 4 character ID and network options behave as for the monument and metadata

clients. The data file type(s) option is required and allow you to specify the type of files

you wish to identify for download.

One way to limit results is to request only datafiles of one type, for example –

rinexHatanaka, and one station for its entire history:

$ java -jar unavcoFiles.jar -4charEqu p456 -rinexHatanaka

Page: 1 of 1, total files = 31, total size(in bytes) = 19508428

Path, Export Time, MD5, Size in bytes, File Type

ftp://data-out.unavco.org/pub/rinex/obs/2008/205/p4562050.08d.Z, 2008-07-

24T00:32:39.000Z, 525319a2544de06e6be487c01ce04037, 635815, hatanaka-

compression of RINEX obs

ftp://data-out.unavco.org/pub/rinex/obs/2008/204/p4562040.08d.Z, 2008-07-

23T08:32:30.000Z, 66e0a782a2f6d8b97bcb496be14b9d51, 648697, hatanaka-

compression of RINEX obs

ftp://data-out.unavco.org/pub/rinex/obs/2008/203/p4562030.08d.Z, 2008-07-

23T08:32:11.000Z, 41f2fa7849ff03666b7fff7cd4d3062f, 643327, hatanaka-

compression of RINEX obs

ftp://data-out.unavco.org/pub/rinex/obs/2008/202/p4562020.08d.Z, 2008-07-

23T08:31:51.000Z, aa7c3fb5dec3164e9731109d96de8e4c, 646005, hatanaka-

compression of RINEX obs

<snip>

The results of the query, in CSV format, include the URL to the file, the date-time the file

was posted on the ftp server. The URLs are returned in time order of the data contents,

most recent first. If several stations are requested, the URLs are alphabetical for each date

of data:

 11/16/2018 13

The date options allow a great deal of flexibility in identifying files that may be of

interest. In some cases the user wants simply to specify an exact date (using -

dataExactDate) or a date range using -dataStartDate and -dataEndDate) for the

contents of the file.

$ java -jar unavcoFiles.jar -dev -4charEqu p123 p124 -rinexHatanaka -

dataStartDate 2008-01-01 -dataEndDate 2008-01-04

Page: 1 of 1, total files = 6, total size(in bytes) = 3716305

Path, Export Time, MD5, Size in bytes, File Type

ftp://data-out.unavco.org/pub/rinex/obs/2008/003/p1230030.08d.Z, 2008-01-

04T01:08:16.000Z, 2e4057c3e8bc0d34dcf824be72c7e2ed, 662447, hatanaka-

compression of RINEX obs

ftp://data-out.unavco.org/pub/rinex/obs/2008/003/p1240030.08d.Z, 2008-01-

04T01:09:01.000Z, 47decb2c51e0a04367c6b16adcf2fea9, 592481, hatanaka-

compression of RINEX obs

ftp://data-out.unavco.org/pub/rinex/obs/2008/002/p1230020.08d.Z, 2008-01-

03T01:07:04.000Z, aeb77344e582d9163a0d2039535737cd, 655031, hatanaka-

compression of RINEX obs

ftp://data-out.unavco.org/pub/rinex/obs/2008/002/p1240020.08d.Z, 2008-01-

03T01:07:25.000Z, 7f3ce9fc25084f5bbee705334dfadd22, 579342, hatanaka-

compression of RINEX obs

ftp://data-out.unavco.org/pub/rinex/obs/2008/001/p1230010.08d.Z, 2008-01-

02T01:00:36.000Z, b7a3ee2be3f18431e1483bed560457b7, 652085, hatanaka-

compression of RINEX obs

ftp://data-out.unavco.org/pub/rinex/obs/2008/001/p1240010.08d.Z, 2008-01-

02T03:26:37.000Z, 0f9d298e07341170894d021368f651c1, 574919, hatanaka-

compression of RINEX obs

Another variation, useful for finding if files have been replaced since they were

previously picked up (for a possible scenario), involves using the -newerThan flag:

$ java -jar unavcoFiles.jar -4charEqu p346 –rinexHatanaka –newerThan 2008-07-07

–dataEndDate 2008-12-07

Page: 1 of 1, total files = 5, total size(in bytes) = 3172887

Path, Export Time, MD5, Size in bytes, File Type

ftp://data-out.unavco.org/pub/rinex/obs/2007/334/p3463340.07d.Z, 2008-07-

10T22:15:28.000Z, ce5122e9758d4d64c72a53b57f6d82c0, 634983, hatanaka-

compression of RINEX obs

ftp://data-out.unavco.org/pub/rinex/obs/2007/333/p3463330.07d.Z, 2008-07-

10T22:17:35.000Z, c1cee7d5808a864af3323f78729af110, 633979, hatanaka-

compression of RINEX obs

ftp://data-out.unavco.org/pub/rinex/obs/2007/332/p3463320.07d.Z, 2008-07-

10T22:17:03.000Z, 856e755e03c5b48ae18993169c7e1e0d, 636279, hatanaka-

compression of RINEX obs

ftp://data-out.unavco.org/pub/rinex/obs/2007/331/p3463310.07d.Z, 2008-07-

10T22:16:24.000Z, 25176ad04963853a32ef56de573d296c, 634529, hatanaka-

compression of RINEX obs

ftp://data-out.unavco.org/pub/rinex/obs/2007/330/p3463300.07d.Z, 2008-07-

10T22:15:48.000Z, 222c431b700986acbb178709426a7a14, 633117, hatanaka-

compression of RINEX obs

This shows files with contents having end times before December 12, 2007, but posted

after 2008-07-07.

 11/16/2018 14

If you have questions that are not addressed by this document, please e-mail

archive@unavco.org.

